Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Dic10

Direct product G=N×Q with N=C6 and Q=C2×Dic10
dρLabelID
C2×C6×Dic10480C2xC6xDic10480,1135

Semidirect products G=N:Q with N=C6 and Q=C2×Dic10
extensionφ:Q→Aut NdρLabelID
C61(C2×Dic10) = C2×S3×Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6:1(C2xDic10)480,1078
C62(C2×Dic10) = C22×C15⋊Q8φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6:2(C2xDic10)480,1121
C63(C2×Dic10) = C22×Dic30φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6:3(C2xDic10)480,1165

Non-split extensions G=N.Q with N=C6 and Q=C2×Dic10
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Dic10) = Dic35Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.1(C2xDic10)480,400
C6.2(C2×Dic10) = Dic151Q8φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.2(C2xDic10)480,403
C6.3(C2×Dic10) = Dic3⋊Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.3(C2xDic10)480,404
C6.4(C2×Dic10) = Dic3×Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.4(C2xDic10)480,406
C6.5(C2×Dic10) = Dic3014C4φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.5(C2xDic10)480,416
C6.6(C2×Dic10) = Dic3.Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.6(C2xDic10)480,419
C6.7(C2×Dic10) = Dic3.2Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.7(C2xDic10)480,422
C6.8(C2×Dic10) = D6⋊Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.8(C2xDic10)480,428
C6.9(C2×Dic10) = C60.45D4φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.9(C2xDic10)480,441
C6.10(C2×Dic10) = C60.46D4φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.10(C2xDic10)480,445
C6.11(C2×Dic10) = Dic3.3Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.11(C2xDic10)480,455
C6.12(C2×Dic10) = C60.48D4φ: C2×Dic10/Dic10C2 ⊆ Aut C6480C6.12(C2xDic10)480,465
C6.13(C2×Dic10) = S3×C10.D4φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.13(C2xDic10)480,475
C6.14(C2×Dic10) = D61Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.14(C2xDic10)480,486
C6.15(C2×Dic10) = D62Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.15(C2xDic10)480,493
C6.16(C2×Dic10) = S3×C4⋊Dic5φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.16(C2xDic10)480,502
C6.17(C2×Dic10) = D63Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.17(C2xDic10)480,508
C6.18(C2×Dic10) = D64Dic10φ: C2×Dic10/Dic10C2 ⊆ Aut C6240C6.18(C2xDic10)480,512
C6.19(C2×Dic10) = C60.6Q8φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.19(C2xDic10)480,457
C6.20(C2×Dic10) = C12.Dic10φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.20(C2xDic10)480,460
C6.21(C2×Dic10) = C20.Dic6φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.21(C2xDic10)480,464
C6.22(C2×Dic10) = C4×C15⋊Q8φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.22(C2xDic10)480,543
C6.23(C2×Dic10) = C60⋊Q8φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.23(C2xDic10)480,544
C6.24(C2×Dic10) = C204Dic6φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.24(C2xDic10)480,545
C6.25(C2×Dic10) = C20⋊Dic6φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.25(C2xDic10)480,546
C6.26(C2×Dic10) = C2×C30.Q8φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.26(C2xDic10)480,617
C6.27(C2×Dic10) = C2×Dic155C4φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.27(C2xDic10)480,620
C6.28(C2×Dic10) = C2×C6.Dic10φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6480C6.28(C2xDic10)480,621
C6.29(C2×Dic10) = (C2×C30)⋊Q8φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6240C6.29(C2xDic10)480,650
C6.30(C2×Dic10) = (C2×C10)⋊8Dic6φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6240C6.30(C2xDic10)480,651
C6.31(C2×Dic10) = Dic15.48D4φ: C2×Dic10/C2×Dic5C2 ⊆ Aut C6240C6.31(C2xDic10)480,652
C6.32(C2×Dic10) = C4×Dic30φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.32(C2xDic10)480,833
C6.33(C2×Dic10) = C608Q8φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.33(C2xDic10)480,834
C6.34(C2×Dic10) = C60.24Q8φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.34(C2xDic10)480,835
C6.35(C2×Dic10) = C222Dic30φ: C2×Dic10/C2×C20C2 ⊆ Aut C6240C6.35(C2xDic10)480,843
C6.36(C2×Dic10) = C4⋊Dic30φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.36(C2xDic10)480,853
C6.37(C2×Dic10) = C4.Dic30φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.37(C2xDic10)480,855
C6.38(C2×Dic10) = C2×C30.4Q8φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.38(C2xDic10)480,888
C6.39(C2×Dic10) = C60.205D4φ: C2×Dic10/C2×C20C2 ⊆ Aut C6240C6.39(C2xDic10)480,889
C6.40(C2×Dic10) = C2×C605C4φ: C2×Dic10/C2×C20C2 ⊆ Aut C6480C6.40(C2xDic10)480,890
C6.41(C2×Dic10) = C12×Dic10central extension (φ=1)480C6.41(C2xDic10)480,661
C6.42(C2×Dic10) = C3×C202Q8central extension (φ=1)480C6.42(C2xDic10)480,662
C6.43(C2×Dic10) = C3×C20.6Q8central extension (φ=1)480C6.43(C2xDic10)480,663
C6.44(C2×Dic10) = C3×Dic5.14D4central extension (φ=1)240C6.44(C2xDic10)480,671
C6.45(C2×Dic10) = C3×C20⋊Q8central extension (φ=1)480C6.45(C2xDic10)480,681
C6.46(C2×Dic10) = C3×C4.Dic10central extension (φ=1)480C6.46(C2xDic10)480,683
C6.47(C2×Dic10) = C6×C10.D4central extension (φ=1)480C6.47(C2xDic10)480,716
C6.48(C2×Dic10) = C3×C20.48D4central extension (φ=1)240C6.48(C2xDic10)480,717
C6.49(C2×Dic10) = C6×C4⋊Dic5central extension (φ=1)480C6.49(C2xDic10)480,718

׿
×
𝔽