direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic10, C10⋊Q8, C4.11D10, C10.1C23, C22.8D10, C20.11C22, Dic5.1C22, C5⋊1(C2×Q8), (C2×C4).4D5, (C2×C20).4C2, C2.3(C22×D5), (C2×C10).8C22, (C2×Dic5).3C2, SmallGroup(80,35)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Dic10
G = < a,b,c | a2=b20=1, c2=b10, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Dic10
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
(1 37)(2 38)(3 39)(4 40)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 46 11 56)(2 45 12 55)(3 44 13 54)(4 43 14 53)(5 42 15 52)(6 41 16 51)(7 60 17 50)(8 59 18 49)(9 58 19 48)(10 57 20 47)(21 62 31 72)(22 61 32 71)(23 80 33 70)(24 79 34 69)(25 78 35 68)(26 77 36 67)(27 76 37 66)(28 75 38 65)(29 74 39 64)(30 73 40 63)
G:=sub<Sym(80)| (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,46,11,56)(2,45,12,55)(3,44,13,54)(4,43,14,53)(5,42,15,52)(6,41,16,51)(7,60,17,50)(8,59,18,49)(9,58,19,48)(10,57,20,47)(21,62,31,72)(22,61,32,71)(23,80,33,70)(24,79,34,69)(25,78,35,68)(26,77,36,67)(27,76,37,66)(28,75,38,65)(29,74,39,64)(30,73,40,63)>;
G:=Group( (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,46,11,56)(2,45,12,55)(3,44,13,54)(4,43,14,53)(5,42,15,52)(6,41,16,51)(7,60,17,50)(8,59,18,49)(9,58,19,48)(10,57,20,47)(21,62,31,72)(22,61,32,71)(23,80,33,70)(24,79,34,69)(25,78,35,68)(26,77,36,67)(27,76,37,66)(28,75,38,65)(29,74,39,64)(30,73,40,63) );
G=PermutationGroup([[(1,37),(2,38),(3,39),(4,40),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,46,11,56),(2,45,12,55),(3,44,13,54),(4,43,14,53),(5,42,15,52),(6,41,16,51),(7,60,17,50),(8,59,18,49),(9,58,19,48),(10,57,20,47),(21,62,31,72),(22,61,32,71),(23,80,33,70),(24,79,34,69),(25,78,35,68),(26,77,36,67),(27,76,37,66),(28,75,38,65),(29,74,39,64),(30,73,40,63)]])
C2×Dic10 is a maximal subgroup of
C10.Q16 C20.44D4 C4.12D20 Dic5.D4 C20⋊2Q8 C4.D20 Dic5.14D4 Dic5.5D4 Dic5⋊3Q8 C20⋊Q8 D10⋊Q8 D10⋊2Q8 C8.D10 C20.48D4 C20.17D4 Dic5⋊Q8 D4.9D10 C2×Q8×D5 D4.10D10
C2×Dic10 is a maximal quotient of
C20⋊2Q8 C20.6Q8 Dic5.14D4 C20⋊Q8 C4.Dic10 C20.48D4
Matrix representation of C2×Dic10 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 1 | 40 |
0 | 0 | 8 | 34 |
40 | 11 | 0 | 0 |
11 | 1 | 0 | 0 |
0 | 0 | 38 | 8 |
0 | 0 | 40 | 3 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[0,40,0,0,1,0,0,0,0,0,1,8,0,0,40,34],[40,11,0,0,11,1,0,0,0,0,38,40,0,0,8,3] >;
C2×Dic10 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_{10}
% in TeX
G:=Group("C2xDic10");
// GroupNames label
G:=SmallGroup(80,35);
// by ID
G=gap.SmallGroup(80,35);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,40,182,42,1604]);
// Polycyclic
G:=Group<a,b,c|a^2=b^20=1,c^2=b^10,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Dic10 in TeX
Character table of C2×Dic10 in TeX