Extensions 1→N→G→Q→1 with N=D42S3 and Q=D5

Direct product G=N×Q with N=D42S3 and Q=D5

Semidirect products G=N:Q with N=D42S3 and Q=D5
extensionφ:Q→Out NdρLabelID
D42S31D5 = D60.C22φ: D5/C5C2 ⊆ Out D42S31208+D4:2S3:1D5480,556
D42S32D5 = D20.24D6φ: D5/C5C2 ⊆ Out D42S32408-D4:2S3:2D5480,569
D42S33D5 = C60.19C23φ: D5/C5C2 ⊆ Out D42S32408+D4:2S3:3D5480,571
D42S34D5 = C15⋊2- 1+4φ: D5/C5C2 ⊆ Out D42S32408-D4:2S3:4D5480,1096
D42S35D5 = D2014D6φ: D5/C5C2 ⊆ Out D42S31208+D4:2S3:5D5480,1102
D42S36D5 = D30.C23φ: trivial image1208+D4:2S3:6D5480,1100

Non-split extensions G=N.Q with N=D42S3 and Q=D5
extensionφ:Q→Out NdρLabelID
D42S3.D5 = C60.10C23φ: D5/C5C2 ⊆ Out D42S32408-D4:2S3.D5480,562