Extensions 1→N→G→Q→1 with N=C2×S3×Dic5 and Q=C2

Direct product G=N×Q with N=C2×S3×Dic5 and Q=C2
dρLabelID
C22×S3×Dic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=C2×S3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×Dic5)⋊1C2 = Dic54D12φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):1C2480,481
(C2×S3×Dic5)⋊2C2 = Dic1514D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):2C2480,482
(C2×S3×Dic5)⋊3C2 = Dic5×D12φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):3C2480,491
(C2×S3×Dic5)⋊4C2 = Dic5⋊D12φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):4C2480,492
(C2×S3×Dic5)⋊5C2 = (C2×D12).D5φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):5C2480,499
(C2×S3×Dic5)⋊6C2 = D6.D20φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):6C2480,503
(C2×S3×Dic5)⋊7C2 = Dic158D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):7C2480,511
(C2×S3×Dic5)⋊8C2 = D6⋊(C4×D5)φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):8C2480,516
(C2×S3×Dic5)⋊9C2 = Dic159D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):9C2480,518
(C2×S3×Dic5)⋊10C2 = Dic152D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):10C2480,529
(C2×S3×Dic5)⋊11C2 = D6.9D20φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):11C2480,533
(C2×S3×Dic5)⋊12C2 = S3×D10⋊C4φ: C2/C1C2 ⊆ Out C2×S3×Dic5120(C2xS3xDic5):12C2480,548
(C2×S3×Dic5)⋊13C2 = Dic5×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):13C2480,627
(C2×S3×Dic5)⋊14C2 = S3×C23.D5φ: C2/C1C2 ⊆ Out C2×S3×Dic5120(C2xS3xDic5):14C2480,630
(C2×S3×Dic5)⋊15C2 = (S3×C10).D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):15C2480,631
(C2×S3×Dic5)⋊16C2 = Dic154D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):16C2480,634
(C2×S3×Dic5)⋊17C2 = Dic1517D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):17C2480,636
(C2×S3×Dic5)⋊18C2 = (S3×C10)⋊D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):18C2480,641
(C2×S3×Dic5)⋊19C2 = C2×D12⋊D5φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):19C2480,1079
(C2×S3×Dic5)⋊20C2 = C2×D125D5φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):20C2480,1084
(C2×S3×Dic5)⋊21C2 = S3×D42D5φ: C2/C1C2 ⊆ Out C2×S3×Dic51208-(C2xS3xDic5):21C2480,1099
(C2×S3×Dic5)⋊22C2 = C2×C30.C23φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):22C2480,1114
(C2×S3×Dic5)⋊23C2 = C2×Dic3.D10φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5):23C2480,1116
(C2×S3×Dic5)⋊24C2 = C2×S3×C5⋊D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5120(C2xS3xDic5):24C2480,1123
(C2×S3×Dic5)⋊25C2 = S3×C2×C4×D5φ: trivial image120(C2xS3xDic5):25C2480,1086

Non-split extensions G=N.Q with N=C2×S3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×Dic5).1C2 = D6.(C4×D5)φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).1C2480,474
(C2×S3×Dic5).2C2 = S3×C10.D4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).2C2480,475
(C2×S3×Dic5).3C2 = (S3×Dic5)⋊C4φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).3C2480,476
(C2×S3×Dic5).4C2 = D61Dic10φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).4C2480,486
(C2×S3×Dic5).5C2 = D62Dic10φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).5C2480,493
(C2×S3×Dic5).6C2 = S3×C4⋊Dic5φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).6C2480,502
(C2×S3×Dic5).7C2 = D63Dic10φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).7C2480,508
(C2×S3×Dic5).8C2 = D64Dic10φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).8C2480,512
(C2×S3×Dic5).9C2 = C2×S3×Dic10φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).9C2480,1078
(C2×S3×Dic5).10C2 = Dic5.22D12φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).10C2480,246
(C2×S3×Dic5).11C2 = C2×S3×C5⋊C8φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).11C2480,1002
(C2×S3×Dic5).12C2 = S3×C22.F5φ: C2/C1C2 ⊆ Out C2×S3×Dic51208-(C2xS3xDic5).12C2480,1004
(C2×S3×Dic5).13C2 = C2×D6.F5φ: C2/C1C2 ⊆ Out C2×S3×Dic5240(C2xS3xDic5).13C2480,1008
(C2×S3×Dic5).14C2 = C4×S3×Dic5φ: trivial image240(C2xS3xDic5).14C2480,473

׿
×
𝔽