Copied to
clipboard

G = C2×S3×Dic5order 240 = 24·3·5

Direct product of C2, S3 and Dic5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×S3×Dic5, D6.11D10, C30.18C23, Dic158C22, C104(C4×S3), C305(C2×C4), (S3×C10)⋊4C4, C156(C22×C4), C61(C2×Dic5), (C6×Dic5)⋊3C2, (C2×C10).14D6, (C2×C6).13D10, C31(C22×Dic5), (C2×Dic15)⋊9C2, (C22×S3).2D5, C22.12(S3×D5), C6.18(C22×D5), C10.18(C22×S3), (C2×C30).12C22, (C3×Dic5)⋊5C22, (S3×C10).11C22, C55(S3×C2×C4), C2.3(C2×S3×D5), (C5×S3)⋊3(C2×C4), (S3×C2×C10).2C2, SmallGroup(240,142)

Series: Derived Chief Lower central Upper central

C1C15 — C2×S3×Dic5
C1C5C15C30C3×Dic5S3×Dic5 — C2×S3×Dic5
C15 — C2×S3×Dic5
C1C22

Generators and relations for C2×S3×Dic5
 G = < a,b,c,d,e | a2=b3=c2=d10=1, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 336 in 108 conjugacy classes, 56 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C23, C10, C10, C10, Dic3, C12, D6, C2×C6, C15, C22×C4, Dic5, Dic5, C2×C10, C2×C10, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C30, C30, C2×Dic5, C2×Dic5, C22×C10, S3×C2×C4, C3×Dic5, Dic15, S3×C10, C2×C30, C22×Dic5, S3×Dic5, C6×Dic5, C2×Dic15, S3×C2×C10, C2×S3×Dic5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, D6, C22×C4, Dic5, D10, C4×S3, C22×S3, C2×Dic5, C22×D5, S3×C2×C4, S3×D5, C22×Dic5, S3×Dic5, C2×S3×D5, C2×S3×Dic5

Smallest permutation representation of C2×S3×Dic5
On 120 points
Generators in S120
(1 59)(2 60)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 91)(21 48)(22 49)(23 50)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 68)(32 69)(33 70)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 21 33)(2 22 34)(3 23 35)(4 24 36)(5 25 37)(6 26 38)(7 27 39)(8 28 40)(9 29 31)(10 30 32)(11 111 107)(12 112 108)(13 113 109)(14 114 110)(15 115 101)(16 116 102)(17 117 103)(18 118 104)(19 119 105)(20 120 106)(41 63 52)(42 64 53)(43 65 54)(44 66 55)(45 67 56)(46 68 57)(47 69 58)(48 70 59)(49 61 60)(50 62 51)(71 96 85)(72 97 86)(73 98 87)(74 99 88)(75 100 89)(76 91 90)(77 92 81)(78 93 82)(79 94 83)(80 95 84)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 51)(9 52)(10 53)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 71)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 61)(28 62)(29 63)(30 64)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(81 116)(82 117)(83 118)(84 119)(85 120)(86 111)(87 112)(88 113)(89 114)(90 115)(91 101)(92 102)(93 103)(94 104)(95 105)(96 106)(97 107)(98 108)(99 109)(100 110)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 86 6 81)(2 85 7 90)(3 84 8 89)(4 83 9 88)(5 82 10 87)(11 70 16 65)(12 69 17 64)(13 68 18 63)(14 67 19 62)(15 66 20 61)(21 72 26 77)(22 71 27 76)(23 80 28 75)(24 79 29 74)(25 78 30 73)(31 99 36 94)(32 98 37 93)(33 97 38 92)(34 96 39 91)(35 95 40 100)(41 109 46 104)(42 108 47 103)(43 107 48 102)(44 106 49 101)(45 105 50 110)(51 114 56 119)(52 113 57 118)(53 112 58 117)(54 111 59 116)(55 120 60 115)

G:=sub<Sym(120)| (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,91)(21,48)(22,49)(23,50)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,68)(32,69)(33,70)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,21,33)(2,22,34)(3,23,35)(4,24,36)(5,25,37)(6,26,38)(7,27,39)(8,28,40)(9,29,31)(10,30,32)(11,111,107)(12,112,108)(13,113,109)(14,114,110)(15,115,101)(16,116,102)(17,117,103)(18,118,104)(19,119,105)(20,120,106)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,61)(28,62)(29,63)(30,64)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,86,6,81)(2,85,7,90)(3,84,8,89)(4,83,9,88)(5,82,10,87)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,72,26,77)(22,71,27,76)(23,80,28,75)(24,79,29,74)(25,78,30,73)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115)>;

G:=Group( (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,91)(21,48)(22,49)(23,50)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,68)(32,69)(33,70)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,21,33)(2,22,34)(3,23,35)(4,24,36)(5,25,37)(6,26,38)(7,27,39)(8,28,40)(9,29,31)(10,30,32)(11,111,107)(12,112,108)(13,113,109)(14,114,110)(15,115,101)(16,116,102)(17,117,103)(18,118,104)(19,119,105)(20,120,106)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,61)(28,62)(29,63)(30,64)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,86,6,81)(2,85,7,90)(3,84,8,89)(4,83,9,88)(5,82,10,87)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,72,26,77)(22,71,27,76)(23,80,28,75)(24,79,29,74)(25,78,30,73)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115) );

G=PermutationGroup([[(1,59),(2,60),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,91),(21,48),(22,49),(23,50),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,68),(32,69),(33,70),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,21,33),(2,22,34),(3,23,35),(4,24,36),(5,25,37),(6,26,38),(7,27,39),(8,28,40),(9,29,31),(10,30,32),(11,111,107),(12,112,108),(13,113,109),(14,114,110),(15,115,101),(16,116,102),(17,117,103),(18,118,104),(19,119,105),(20,120,106),(41,63,52),(42,64,53),(43,65,54),(44,66,55),(45,67,56),(46,68,57),(47,69,58),(48,70,59),(49,61,60),(50,62,51),(71,96,85),(72,97,86),(73,98,87),(74,99,88),(75,100,89),(76,91,90),(77,92,81),(78,93,82),(79,94,83),(80,95,84)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,51),(9,52),(10,53),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,71),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,61),(28,62),(29,63),(30,64),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(81,116),(82,117),(83,118),(84,119),(85,120),(86,111),(87,112),(88,113),(89,114),(90,115),(91,101),(92,102),(93,103),(94,104),(95,105),(96,106),(97,107),(98,108),(99,109),(100,110)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,86,6,81),(2,85,7,90),(3,84,8,89),(4,83,9,88),(5,82,10,87),(11,70,16,65),(12,69,17,64),(13,68,18,63),(14,67,19,62),(15,66,20,61),(21,72,26,77),(22,71,27,76),(23,80,28,75),(24,79,29,74),(25,78,30,73),(31,99,36,94),(32,98,37,93),(33,97,38,92),(34,96,39,91),(35,95,40,100),(41,109,46,104),(42,108,47,103),(43,107,48,102),(44,106,49,101),(45,105,50,110),(51,114,56,119),(52,113,57,118),(53,112,58,117),(54,111,59,116),(55,120,60,115)]])

C2×S3×Dic5 is a maximal subgroup of
Dic5.22D12  D6.(C4×D5)  (S3×Dic5)⋊C4  Dic54D12  Dic1514D4  D61Dic10  Dic5⋊D12  D62Dic10  (C2×D12).D5  D6.D20  D63Dic10  Dic158D4  D64Dic10  D6⋊(C4×D5)  Dic159D4  Dic152D4  D6.9D20  (S3×C10).D4  Dic154D4  Dic1517D4  (S3×C10)⋊D4  S3×C2×C4×D5
C2×S3×Dic5 is a maximal quotient of
D12.2Dic5  D12.Dic5  (S3×C20)⋊5C4  Dic157Q8  (S3×C20)⋊7C4  Dic158D4  C23.26(S3×D5)  Dic1517D4

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C10A···10F10G···10N12A12B12C12D15A15B30A···30F
order122222223444444445566610···1010···1012121212151530···30
size111133332555515151515222222···26···610101010444···4

48 irreducible representations

dim11111122222222444
type+++++++++-+++-+
imageC1C2C2C2C2C4S3D5D6D6Dic5D10D10C4×S3S3×D5S3×Dic5C2×S3×D5
kernelC2×S3×Dic5S3×Dic5C6×Dic5C2×Dic15S3×C2×C10S3×C10C2×Dic5C22×S3Dic5C2×C10D6D6C2×C6C10C22C2C2
# reps14111812218424242

Matrix representation of C2×S3×Dic5 in GL4(𝔽61) generated by

1000
0100
00600
00060
,
11500
125900
0010
0001
,
11500
06000
00600
00060
,
60000
06000
00431
00600
,
50000
05000
00169
005345
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,12,0,0,15,59,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,15,60,0,0,0,0,60,0,0,0,0,60],[60,0,0,0,0,60,0,0,0,0,43,60,0,0,1,0],[50,0,0,0,0,50,0,0,0,0,16,53,0,0,9,45] >;

C2×S3×Dic5 in GAP, Magma, Sage, TeX

C_2\times S_3\times {\rm Dic}_5
% in TeX

G:=Group("C2xS3xDic5");
// GroupNames label

G:=SmallGroup(240,142);
// by ID

G=gap.SmallGroup(240,142);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^10=1,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽