Copied to
clipboard

G = S3xD4:2D5order 480 = 25·3·5

Direct product of S3 and D4:2D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xD4:2D5, D12:12D10, Dic10:11D6, C30.27C24, C60.51C23, Dic30:8C22, D30.12C23, Dic15.14C23, (C4xD5):8D6, D4:8(S3xD5), (S3xD4):6D5, C5:D4:3D6, (C5xD4):11D6, C3:D4:3D10, C15:Q8:2C22, (C3xD4):11D10, D12:5D5:4C2, D12:D5:4C2, D4:2D15:6C2, (C2xDic5):14D6, (S3xDic10):5C2, (C4xS3).27D10, (C5xD12):8C22, (D4xC15):9C22, (C4xD15):3C22, (D5xC12):2C22, C15:D4:5C22, C5:D12:4C22, C15:7D4:3C22, (C2xC30).3C23, C6.27(C23xD5), Dic3.D10:3C2, C30.C23:4C2, C20.51(C22xS3), C10.27(S3xC23), D6.12(C22xD5), (C6xD5).11C23, C12.51(C22xD5), (S3xC20).18C22, (S3xC10).12C23, D30.C2:11C22, (D5xDic3):11C22, (S3xDic5):11C22, (C3xDic10):7C22, (C6xDic5):12C22, D10.12(C22xS3), (C22xS3).60D10, (C2xDic15):17C22, (C5xDic3).14C23, (C3xDic5).45C23, Dic3.13(C22xD5), Dic5.57(C22xS3), (C4xS3xD5):3C2, (C5xS3xD4):5C2, C5:3(S3xC4oD4), C4.51(C2xS3xD5), C15:12(C2xC4oD4), C3:3(C2xD4:2D5), (S3xC5:D4):3C2, C22.3(C2xS3xD5), (C2xS3xDic5):21C2, (C5xS3):2(C4oD4), (C3xD4:2D5):5C2, (C2xS3xD5).9C22, C2.30(C22xS3xD5), (C5xC3:D4):3C22, (C3xC5:D4):3C22, (C2xC6).3(C22xD5), (S3xC2xC10).60C22, (C2xC10).3(C22xS3), SmallGroup(480,1099)

Series: Derived Chief Lower central Upper central

C1C30 — S3xD4:2D5
C1C5C15C30C6xD5C2xS3xD5C4xS3xD5 — S3xD4:2D5
C15C30 — S3xD4:2D5
C1C2D4

Generators and relations for S3xD4:2D5
 G = < a,b,c,d,e,f | a3=b2=c4=d2=e5=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, fdf=c2d, fef=e-1 >

Subgroups: 1500 in 328 conjugacy classes, 112 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, S3, C6, C6, C2xC4, D4, D4, Q8, C23, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, D6, C2xC6, C2xC6, C15, C22xC4, C2xD4, C2xQ8, C4oD4, Dic5, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, Dic6, C4xS3, C4xS3, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C22xS3, C5xS3, C5xS3, C3xD5, D15, C30, C30, C2xC4oD4, Dic10, Dic10, C4xD5, C4xD5, C2xDic5, C2xDic5, C5:D4, C5:D4, C2xC20, C5xD4, C5xD4, C22xD5, C22xC10, S3xC2xC4, C4oD12, S3xD4, S3xD4, D4:2S3, S3xQ8, Q8:3S3, C3xC4oD4, C5xDic3, C3xDic5, C3xDic5, Dic15, Dic15, C60, S3xD5, C6xD5, S3xC10, S3xC10, S3xC10, D30, C2xC30, C2xDic10, C2xC4xD5, D4:2D5, D4:2D5, C22xDic5, C2xC5:D4, D4xC10, S3xC4oD4, D5xDic3, S3xDic5, S3xDic5, D30.C2, C15:D4, C5:D12, C15:Q8, C3xDic10, D5xC12, C6xDic5, C3xC5:D4, S3xC20, C5xD12, C5xC3:D4, Dic30, C4xD15, C2xDic15, C15:7D4, D4xC15, C2xS3xD5, S3xC2xC10, C2xD4:2D5, S3xDic10, D12:D5, D12:5D5, C4xS3xD5, C30.C23, C2xS3xDic5, Dic3.D10, S3xC5:D4, C3xD4:2D5, C5xS3xD4, D4:2D15, S3xD4:2D5
Quotients: C1, C2, C22, S3, C23, D5, D6, C4oD4, C24, D10, C22xS3, C2xC4oD4, C22xD5, S3xC23, S3xD5, D4:2D5, C23xD5, S3xC4oD4, C2xS3xD5, C2xD4:2D5, C22xS3xD5, S3xD4:2D5

Smallest permutation representation of S3xD4:2D5
On 120 points
Generators in S120
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(36 41)(37 42)(38 43)(39 44)(40 45)(51 56)(52 57)(53 58)(54 59)(55 60)(66 71)(67 72)(68 73)(69 74)(70 75)(81 86)(82 87)(83 88)(84 89)(85 90)(96 101)(97 102)(98 103)(99 104)(100 105)(111 116)(112 117)(113 118)(114 119)(115 120)
(1 46 16 31)(2 47 17 32)(3 48 18 33)(4 49 19 34)(5 50 20 35)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 106 76 91)(62 107 77 92)(63 108 78 93)(64 109 79 94)(65 110 80 95)(66 111 81 96)(67 112 82 97)(68 113 83 98)(69 114 84 99)(70 115 85 100)(71 116 86 101)(72 117 87 102)(73 118 88 103)(74 119 89 104)(75 120 90 105)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 63)(2 62)(3 61)(4 65)(5 64)(6 68)(7 67)(8 66)(9 70)(10 69)(11 73)(12 72)(13 71)(14 75)(15 74)(16 78)(17 77)(18 76)(19 80)(20 79)(21 83)(22 82)(23 81)(24 85)(25 84)(26 88)(27 87)(28 86)(29 90)(30 89)(31 93)(32 92)(33 91)(34 95)(35 94)(36 98)(37 97)(38 96)(39 100)(40 99)(41 103)(42 102)(43 101)(44 105)(45 104)(46 108)(47 107)(48 106)(49 110)(50 109)(51 113)(52 112)(53 111)(54 115)(55 114)(56 118)(57 117)(58 116)(59 120)(60 119)

G:=sub<Sym(120)| (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(96,101)(97,102)(98,103)(99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120), (1,46,16,31)(2,47,17,32)(3,48,18,33)(4,49,19,34)(5,50,20,35)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,106,76,91)(62,107,77,92)(63,108,78,93)(64,109,79,94)(65,110,80,95)(66,111,81,96)(67,112,82,97)(68,113,83,98)(69,114,84,99)(70,115,85,100)(71,116,86,101)(72,117,87,102)(73,118,88,103)(74,119,89,104)(75,120,90,105), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,63)(2,62)(3,61)(4,65)(5,64)(6,68)(7,67)(8,66)(9,70)(10,69)(11,73)(12,72)(13,71)(14,75)(15,74)(16,78)(17,77)(18,76)(19,80)(20,79)(21,83)(22,82)(23,81)(24,85)(25,84)(26,88)(27,87)(28,86)(29,90)(30,89)(31,93)(32,92)(33,91)(34,95)(35,94)(36,98)(37,97)(38,96)(39,100)(40,99)(41,103)(42,102)(43,101)(44,105)(45,104)(46,108)(47,107)(48,106)(49,110)(50,109)(51,113)(52,112)(53,111)(54,115)(55,114)(56,118)(57,117)(58,116)(59,120)(60,119)>;

G:=Group( (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(96,101)(97,102)(98,103)(99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120), (1,46,16,31)(2,47,17,32)(3,48,18,33)(4,49,19,34)(5,50,20,35)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,106,76,91)(62,107,77,92)(63,108,78,93)(64,109,79,94)(65,110,80,95)(66,111,81,96)(67,112,82,97)(68,113,83,98)(69,114,84,99)(70,115,85,100)(71,116,86,101)(72,117,87,102)(73,118,88,103)(74,119,89,104)(75,120,90,105), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,63)(2,62)(3,61)(4,65)(5,64)(6,68)(7,67)(8,66)(9,70)(10,69)(11,73)(12,72)(13,71)(14,75)(15,74)(16,78)(17,77)(18,76)(19,80)(20,79)(21,83)(22,82)(23,81)(24,85)(25,84)(26,88)(27,87)(28,86)(29,90)(30,89)(31,93)(32,92)(33,91)(34,95)(35,94)(36,98)(37,97)(38,96)(39,100)(40,99)(41,103)(42,102)(43,101)(44,105)(45,104)(46,108)(47,107)(48,106)(49,110)(50,109)(51,113)(52,112)(53,111)(54,115)(55,114)(56,118)(57,117)(58,116)(59,120)(60,119) );

G=PermutationGroup([[(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(36,41),(37,42),(38,43),(39,44),(40,45),(51,56),(52,57),(53,58),(54,59),(55,60),(66,71),(67,72),(68,73),(69,74),(70,75),(81,86),(82,87),(83,88),(84,89),(85,90),(96,101),(97,102),(98,103),(99,104),(100,105),(111,116),(112,117),(113,118),(114,119),(115,120)], [(1,46,16,31),(2,47,17,32),(3,48,18,33),(4,49,19,34),(5,50,20,35),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,106,76,91),(62,107,77,92),(63,108,78,93),(64,109,79,94),(65,110,80,95),(66,111,81,96),(67,112,82,97),(68,113,83,98),(69,114,84,99),(70,115,85,100),(71,116,86,101),(72,117,87,102),(73,118,88,103),(74,119,89,104),(75,120,90,105)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,63),(2,62),(3,61),(4,65),(5,64),(6,68),(7,67),(8,66),(9,70),(10,69),(11,73),(12,72),(13,71),(14,75),(15,74),(16,78),(17,77),(18,76),(19,80),(20,79),(21,83),(22,82),(23,81),(24,85),(25,84),(26,88),(27,87),(28,86),(29,90),(30,89),(31,93),(32,92),(33,91),(34,95),(35,94),(36,98),(37,97),(38,96),(39,100),(40,99),(41,103),(42,102),(43,101),(44,105),(45,104),(46,108),(47,107),(48,106),(49,110),(50,109),(51,113),(52,112),(53,111),(54,115),(55,114),(56,118),(57,117),(58,116),(59,120),(60,119)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B6A6B6C6D10A10B10C10D10E10F10G10H10I10J10K10L10M10N12A12B12C12D12E15A15B20A20B20C20D30A30B30C30D30E30F60A60B
order122222222234444444444556666101010101010101010101010101012121212121515202020203030303030306060
size1122336610302255610101515303022244202244446666121212124101020204444121244888888

60 irreducible representations

dim1111111111112222222222222444448
type+++++++++++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D5D6D6D6D6D6C4oD4D10D10D10D10D10S3xD5D4:2D5S3xC4oD4C2xS3xD5C2xS3xD5S3xD4:2D5
kernelS3xD4:2D5S3xDic10D12:D5D12:5D5C4xS3xD5C30.C23C2xS3xDic5Dic3.D10S3xC5:D4C3xD4:2D5C5xS3xD4D4:2D15D4:2D5S3xD4Dic10C4xD5C2xDic5C5:D4C5xD4C5xS3C4xS3D12C3:D4C3xD4C22xS3D4S3C5C4C22C1
# reps1111122221111211221422424242242

Matrix representation of S3xD4:2D5 in GL6(F61)

0600000
1600000
001000
000100
000010
000001
,
010000
100000
001000
000100
000010
000001
,
6000000
0600000
000100
0060000
000010
000001
,
6000000
0600000
0006000
0060000
000010
000001
,
100000
010000
001000
000100
0000060
0000117
,
100000
010000
0001100
0050000
0000600
0000171

G:=sub<GL(6,GF(61))| [0,1,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,50,0,0,0,0,11,0,0,0,0,0,0,0,60,17,0,0,0,0,0,1] >;

S3xD4:2D5 in GAP, Magma, Sage, TeX

S_3\times D_4\rtimes_2D_5
% in TeX

G:=Group("S3xD4:2D5");
// GroupNames label

G:=SmallGroup(480,1099);
// by ID

G=gap.SmallGroup(480,1099);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,100,675,185,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=d^2=e^5=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=c^2*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<