Extensions 1→N→G→Q→1 with N=C6×Q8 and Q=D5

Direct product G=N×Q with N=C6×Q8 and Q=D5
dρLabelID
C6×Q8×D5240C6xQ8xD5480,1142

Semidirect products G=N:Q with N=C6×Q8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C6×Q8)⋊1D5 = C2×Q82D15φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):1D5480,906
(C6×Q8)⋊2D5 = Q8.11D30φ: D5/C5C2 ⊆ Out C6×Q82404(C6xQ8):2D5480,907
(C6×Q8)⋊3D5 = D307Q8φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):3D5480,911
(C6×Q8)⋊4D5 = C60.23D4φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):4D5480,912
(C6×Q8)⋊5D5 = C2×Q8×D15φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):5D5480,1172
(C6×Q8)⋊6D5 = C2×Q83D15φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):6D5480,1173
(C6×Q8)⋊7D5 = Q8.15D30φ: D5/C5C2 ⊆ Out C6×Q82404(C6xQ8):7D5480,1174
(C6×Q8)⋊8D5 = C6×Q8⋊D5φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):8D5480,734
(C6×Q8)⋊9D5 = C3×C20.C23φ: D5/C5C2 ⊆ Out C6×Q82404(C6xQ8):9D5480,735
(C6×Q8)⋊10D5 = C3×D103Q8φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):10D5480,739
(C6×Q8)⋊11D5 = C3×C20.23D4φ: D5/C5C2 ⊆ Out C6×Q8240(C6xQ8):11D5480,740
(C6×Q8)⋊12D5 = C3×Q8.10D10φ: D5/C5C2 ⊆ Out C6×Q82404(C6xQ8):12D5480,1144
(C6×Q8)⋊13D5 = C6×Q82D5φ: trivial image240(C6xQ8):13D5480,1143

Non-split extensions G=N.Q with N=C6×Q8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C6×Q8).1D5 = Q82Dic15φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).1D5480,195
(C6×Q8).2D5 = C60.10D4φ: D5/C5C2 ⊆ Out C6×Q82404(C6xQ8).2D5480,196
(C6×Q8).3D5 = C2×C157Q16φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).3D5480,908
(C6×Q8).4D5 = Dic154Q8φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).4D5480,909
(C6×Q8).5D5 = Q8×Dic15φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).5D5480,910
(C6×Q8).6D5 = C3×Q8⋊Dic5φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).6D5480,113
(C6×Q8).7D5 = C3×C20.10D4φ: D5/C5C2 ⊆ Out C6×Q82404(C6xQ8).7D5480,114
(C6×Q8).8D5 = C6×C5⋊Q16φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).8D5480,736
(C6×Q8).9D5 = C3×Dic5⋊Q8φ: D5/C5C2 ⊆ Out C6×Q8480(C6xQ8).9D5480,737
(C6×Q8).10D5 = C3×Q8×Dic5φ: trivial image480(C6xQ8).10D5480,738

׿
×
𝔽