Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=Q8

Direct product G=N×Q with N=C5×Dic3 and Q=Q8
dρLabelID
C5×Q8×Dic3480C5xQ8xDic3480,824

Semidirect products G=N:Q with N=C5×Dic3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1Q8 = Dic151Q8φ: Q8/C2C22 ⊆ Out C5×Dic3480(C5xDic3):1Q8480,403
(C5×Dic3)⋊2Q8 = Dic3⋊Dic10φ: Q8/C2C22 ⊆ Out C5×Dic3480(C5xDic3):2Q8480,404
(C5×Dic3)⋊3Q8 = Dic35Dic10φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):3Q8480,400
(C5×Dic3)⋊4Q8 = Dic3×Dic10φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):4Q8480,406
(C5×Dic3)⋊5Q8 = Dic3014C4φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):5Q8480,416
(C5×Dic3)⋊6Q8 = C60.48D4φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):6Q8480,465
(C5×Dic3)⋊7Q8 = C204Dic6φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):7Q8480,545
(C5×Dic3)⋊8Q8 = C5×C12⋊Q8φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):8Q8480,767
(C5×Dic3)⋊9Q8 = C5×Dic3⋊Q8φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):9Q8480,823
(C5×Dic3)⋊10Q8 = C5×Dic6⋊C4φ: trivial image480(C5xDic3):10Q8480,766

Non-split extensions G=N.Q with N=C5×Dic3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1Q8 = Dic3.Dic10φ: Q8/C2C22 ⊆ Out C5×Dic3480(C5xDic3).1Q8480,419
(C5×Dic3).2Q8 = Dic3.2Dic10φ: Q8/C2C22 ⊆ Out C5×Dic3480(C5xDic3).2Q8480,422
(C5×Dic3).3Q8 = Dic3.3Dic10φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3).3Q8480,455
(C5×Dic3).4Q8 = C5×Dic3.Q8φ: Q8/C4C2 ⊆ Out C5×Dic3480(C5xDic3).4Q8480,768

׿
×
𝔽