Extensions 1→N→G→Q→1 with N=S3×C5⋊D4 and Q=C2

Direct product G=N×Q with N=S3×C5⋊D4 and Q=C2
dρLabelID
C2×S3×C5⋊D4120C2xS3xC5:D4480,1123

Semidirect products G=N:Q with N=S3×C5⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C5⋊D4)⋊1C2 = D2026D6φ: C2/C1C2 ⊆ Out S3×C5⋊D41204(S3xC5:D4):1C2480,1094
(S3×C5⋊D4)⋊2C2 = S3×D4×D5φ: C2/C1C2 ⊆ Out S3×C5⋊D4608+(S3xC5:D4):2C2480,1097
(S3×C5⋊D4)⋊3C2 = S3×D42D5φ: C2/C1C2 ⊆ Out S3×C5⋊D41208-(S3xC5:D4):3C2480,1099
(S3×C5⋊D4)⋊4C2 = D2013D6φ: C2/C1C2 ⊆ Out S3×C5⋊D41208-(S3xC5:D4):4C2480,1101
(S3×C5⋊D4)⋊5C2 = D1214D10φ: C2/C1C2 ⊆ Out S3×C5⋊D41208+(S3xC5:D4):5C2480,1103
(S3×C5⋊D4)⋊6C2 = C15⋊2+ 1+4φ: C2/C1C2 ⊆ Out S3×C5⋊D41204(S3xC5:D4):6C2480,1125
(S3×C5⋊D4)⋊7C2 = S3×C4○D20φ: trivial image1204(S3xC5:D4):7C2480,1091


׿
×
𝔽