Copied to
clipboard

G = D1214D10order 480 = 25·3·5

8th semidirect product of D12 and D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D1214D10, Dic1013D6, D6010C22, C30.31C24, C60.55C23, C1562+ 1+4, D30.16C23, Dic15.18C23, (C4×D5)⋊5D6, (S3×D4)⋊5D5, C5⋊D47D6, (D4×D15)⋊7C2, (D5×D12)⋊5C2, (C4×S3)⋊5D10, D412(S3×D5), (C5×D4)⋊15D6, C53(D4○D12), C3⋊D47D10, (C3×D4)⋊15D10, D42D55S3, (C2×Dic5)⋊8D6, C15⋊Q814C22, D12⋊D55C2, D10⋊D65C2, D60⋊C25C2, C33(D46D10), (S3×C20)⋊6C22, (C4×D15)⋊6C22, (D5×C12)⋊6C22, (C22×S3)⋊6D10, C157D47C22, (C2×C30).7C23, C6.31(C23×D5), D6.D104C2, Dic3.D105C2, (D4×C15)⋊13C22, (C5×D12)⋊10C22, C5⋊D1216C22, C3⋊D2015C22, C15⋊D416C22, C20.55(C22×S3), C10.31(S3×C23), D30.C23C22, (S3×Dic5)⋊3C22, (C6×D5).13C23, D6.27(C22×D5), C12.55(C22×D5), (S3×C10).16C23, (C6×Dic5)⋊14C22, (C3×Dic10)⋊9C22, D10.16(C22×S3), (C22×D15)⋊13C22, Dic5.17(C22×S3), Dic3.16(C22×D5), (C3×Dic5).46C23, (C5×Dic3).17C23, (C5×S3×D4)⋊7C2, C4.55(C2×S3×D5), (S3×C5⋊D4)⋊5C2, (C2×S3×D5)⋊6C22, C22.7(C2×S3×D5), (S3×C2×C10)⋊9C22, (C3×D42D5)⋊7C2, (C2×C5⋊D12)⋊20C2, C2.34(C22×S3×D5), (C5×C3⋊D4)⋊7C22, (C3×C5⋊D4)⋊7C22, (C2×C6).7(C22×D5), (C2×C10).7(C22×S3), SmallGroup(480,1103)

Series: Derived Chief Lower central Upper central

C1C30 — D1214D10
C1C5C15C30C6×D5C2×S3×D5D5×D12 — D1214D10
C15C30 — D1214D10
C1C2D4

Generators and relations for D1214D10
 G = < a,b,c,d | a12=b2=c10=d2=1, bab=a-1, cac-1=a7, dad=a5, cbc-1=a6b, dbd=a10b, dcd=c-1 >

Subgroups: 1884 in 332 conjugacy classes, 108 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C2×C4, D4, D4, Q8, C23, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, D6, C2×C6, C2×C6, C15, C2×D4, C4○D4, Dic5, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, Dic6, C4×S3, C4×S3, D12, D12, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C22×S3, C5×S3, C3×D5, D15, C30, C30, 2+ 1+4, Dic10, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C5⋊D4, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, C2×D12, C4○D12, S3×D4, S3×D4, Q83S3, C3×C4○D4, C5×Dic3, C3×Dic5, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, S3×C10, S3×C10, D30, D30, D30, C2×C30, C4○D20, D4×D5, D42D5, D42D5, C2×C5⋊D4, D4×C10, D4○D12, S3×Dic5, D30.C2, C15⋊D4, C3⋊D20, C5⋊D12, C5⋊D12, C15⋊Q8, C3×Dic10, D5×C12, C6×Dic5, C3×C5⋊D4, S3×C20, C5×D12, C5×C3⋊D4, C4×D15, D60, C157D4, D4×C15, C2×S3×D5, S3×C2×C10, C22×D15, D46D10, D12⋊D5, D60⋊C2, D6.D10, D5×D12, Dic3.D10, C2×C5⋊D12, S3×C5⋊D4, D10⋊D6, C3×D42D5, C5×S3×D4, D4×D15, D1214D10
Quotients: C1, C2, C22, S3, C23, D5, D6, C24, D10, C22×S3, 2+ 1+4, C22×D5, S3×C23, S3×D5, C23×D5, D4○D12, C2×S3×D5, D46D10, C22×S3×D5, D1214D10

Smallest permutation representation of D1214D10
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 20)(14 19)(15 18)(16 17)(21 24)(22 23)(25 26)(27 36)(28 35)(29 34)(30 33)(31 32)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 54)(50 53)(51 52)(55 60)(56 59)(57 58)(61 66)(62 65)(63 64)(67 72)(68 71)(69 70)(73 78)(74 77)(75 76)(79 84)(80 83)(81 82)(85 88)(86 87)(89 96)(90 95)(91 94)(92 93)(97 98)(99 108)(100 107)(101 106)(102 105)(103 104)(109 120)(110 119)(111 118)(112 117)(113 116)(114 115)
(1 45 109 76 23)(2 40 110 83 24 8 46 116 77 18)(3 47 111 78 13)(4 42 112 73 14 10 48 118 79 20)(5 37 113 80 15)(6 44 114 75 16 12 38 120 81 22)(7 39 115 82 17)(9 41 117 84 19)(11 43 119 74 21)(25 86 51 103 69)(26 93 52 98 70 32 87 58 104 64)(27 88 53 105 71)(28 95 54 100 72 34 89 60 106 66)(29 90 55 107 61)(30 85 56 102 62 36 91 50 108 68)(31 92 57 97 63)(33 94 59 99 65)(35 96 49 101 67)
(1 96)(2 89)(3 94)(4 87)(5 92)(6 85)(7 90)(8 95)(9 88)(10 93)(11 86)(12 91)(13 59)(14 52)(15 57)(16 50)(17 55)(18 60)(19 53)(20 58)(21 51)(22 56)(23 49)(24 54)(25 43)(26 48)(27 41)(28 46)(29 39)(30 44)(31 37)(32 42)(33 47)(34 40)(35 45)(36 38)(61 115)(62 120)(63 113)(64 118)(65 111)(66 116)(67 109)(68 114)(69 119)(70 112)(71 117)(72 110)(73 98)(74 103)(75 108)(76 101)(77 106)(78 99)(79 104)(80 97)(81 102)(82 107)(83 100)(84 105)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,26)(27,36)(28,35)(29,34)(30,33)(31,32)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,72)(68,71)(69,70)(73,78)(74,77)(75,76)(79,84)(80,83)(81,82)(85,88)(86,87)(89,96)(90,95)(91,94)(92,93)(97,98)(99,108)(100,107)(101,106)(102,105)(103,104)(109,120)(110,119)(111,118)(112,117)(113,116)(114,115), (1,45,109,76,23)(2,40,110,83,24,8,46,116,77,18)(3,47,111,78,13)(4,42,112,73,14,10,48,118,79,20)(5,37,113,80,15)(6,44,114,75,16,12,38,120,81,22)(7,39,115,82,17)(9,41,117,84,19)(11,43,119,74,21)(25,86,51,103,69)(26,93,52,98,70,32,87,58,104,64)(27,88,53,105,71)(28,95,54,100,72,34,89,60,106,66)(29,90,55,107,61)(30,85,56,102,62,36,91,50,108,68)(31,92,57,97,63)(33,94,59,99,65)(35,96,49,101,67), (1,96)(2,89)(3,94)(4,87)(5,92)(6,85)(7,90)(8,95)(9,88)(10,93)(11,86)(12,91)(13,59)(14,52)(15,57)(16,50)(17,55)(18,60)(19,53)(20,58)(21,51)(22,56)(23,49)(24,54)(25,43)(26,48)(27,41)(28,46)(29,39)(30,44)(31,37)(32,42)(33,47)(34,40)(35,45)(36,38)(61,115)(62,120)(63,113)(64,118)(65,111)(66,116)(67,109)(68,114)(69,119)(70,112)(71,117)(72,110)(73,98)(74,103)(75,108)(76,101)(77,106)(78,99)(79,104)(80,97)(81,102)(82,107)(83,100)(84,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,26)(27,36)(28,35)(29,34)(30,33)(31,32)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,72)(68,71)(69,70)(73,78)(74,77)(75,76)(79,84)(80,83)(81,82)(85,88)(86,87)(89,96)(90,95)(91,94)(92,93)(97,98)(99,108)(100,107)(101,106)(102,105)(103,104)(109,120)(110,119)(111,118)(112,117)(113,116)(114,115), (1,45,109,76,23)(2,40,110,83,24,8,46,116,77,18)(3,47,111,78,13)(4,42,112,73,14,10,48,118,79,20)(5,37,113,80,15)(6,44,114,75,16,12,38,120,81,22)(7,39,115,82,17)(9,41,117,84,19)(11,43,119,74,21)(25,86,51,103,69)(26,93,52,98,70,32,87,58,104,64)(27,88,53,105,71)(28,95,54,100,72,34,89,60,106,66)(29,90,55,107,61)(30,85,56,102,62,36,91,50,108,68)(31,92,57,97,63)(33,94,59,99,65)(35,96,49,101,67), (1,96)(2,89)(3,94)(4,87)(5,92)(6,85)(7,90)(8,95)(9,88)(10,93)(11,86)(12,91)(13,59)(14,52)(15,57)(16,50)(17,55)(18,60)(19,53)(20,58)(21,51)(22,56)(23,49)(24,54)(25,43)(26,48)(27,41)(28,46)(29,39)(30,44)(31,37)(32,42)(33,47)(34,40)(35,45)(36,38)(61,115)(62,120)(63,113)(64,118)(65,111)(66,116)(67,109)(68,114)(69,119)(70,112)(71,117)(72,110)(73,98)(74,103)(75,108)(76,101)(77,106)(78,99)(79,104)(80,97)(81,102)(82,107)(83,100)(84,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,20),(14,19),(15,18),(16,17),(21,24),(22,23),(25,26),(27,36),(28,35),(29,34),(30,33),(31,32),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,54),(50,53),(51,52),(55,60),(56,59),(57,58),(61,66),(62,65),(63,64),(67,72),(68,71),(69,70),(73,78),(74,77),(75,76),(79,84),(80,83),(81,82),(85,88),(86,87),(89,96),(90,95),(91,94),(92,93),(97,98),(99,108),(100,107),(101,106),(102,105),(103,104),(109,120),(110,119),(111,118),(112,117),(113,116),(114,115)], [(1,45,109,76,23),(2,40,110,83,24,8,46,116,77,18),(3,47,111,78,13),(4,42,112,73,14,10,48,118,79,20),(5,37,113,80,15),(6,44,114,75,16,12,38,120,81,22),(7,39,115,82,17),(9,41,117,84,19),(11,43,119,74,21),(25,86,51,103,69),(26,93,52,98,70,32,87,58,104,64),(27,88,53,105,71),(28,95,54,100,72,34,89,60,106,66),(29,90,55,107,61),(30,85,56,102,62,36,91,50,108,68),(31,92,57,97,63),(33,94,59,99,65),(35,96,49,101,67)], [(1,96),(2,89),(3,94),(4,87),(5,92),(6,85),(7,90),(8,95),(9,88),(10,93),(11,86),(12,91),(13,59),(14,52),(15,57),(16,50),(17,55),(18,60),(19,53),(20,58),(21,51),(22,56),(23,49),(24,54),(25,43),(26,48),(27,41),(28,46),(29,39),(30,44),(31,37),(32,42),(33,47),(34,40),(35,45),(36,38),(61,115),(62,120),(63,113),(64,118),(65,111),(66,116),(67,109),(68,114),(69,119),(70,112),(71,117),(72,110),(73,98),(74,103),(75,108),(76,101),(77,106),(78,99),(79,104),(80,97),(81,102),(82,107),(83,100),(84,105)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C4D4E4F5A5B6A6B6C6D10A10B10C10D10E10F10G10H10I10J10K10L10M10N12A12B12C12D12E15A15B20A20B20C20D30A30B30C30D30E30F60A60B
order122222222223444444556666101010101010101010101010101012121212121515202020203030303030306060
size1122666103030302261010103022244202244446666121212124101020204444121244888888

57 irreducible representations

dim1111111111112222222222224444448
type++++++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D5D6D6D6D6D6D10D10D10D10D102+ 1+4S3×D5D4○D12C2×S3×D5C2×S3×D5D46D10D1214D10
kernelD1214D10D12⋊D5D60⋊C2D6.D10D5×D12Dic3.D10C2×C5⋊D12S3×C5⋊D4D10⋊D6C3×D42D5C5×S3×D4D4×D15D42D5S3×D4Dic10C4×D5C2×Dic5C5⋊D4C5×D4C4×S3D12C3⋊D4C3×D4C22×S3C15D4C5C4C22C3C1
# reps1111122221111211221224241222442

Matrix representation of D1214D10 in GL8(𝔽61)

10100000
01010000
600000000
060000000
00000100
000060000
00000001
000000600
,
10100000
01010000
006000000
000600000
00000100
00001000
00000001
00000010
,
6044000000
1744000000
0060440000
0017440000
00009000
000005200
000000270
000000034
,
3047000000
2531000000
311431140000
363036300000
000000027
000000340
00000900
000052000

G:=sub<GL(8,GF(61))| [1,0,60,0,0,0,0,0,0,1,0,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[60,17,0,0,0,0,0,0,44,44,0,0,0,0,0,0,0,0,60,17,0,0,0,0,0,0,44,44,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,52,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,34],[30,25,31,36,0,0,0,0,47,31,14,30,0,0,0,0,0,0,31,36,0,0,0,0,0,0,14,30,0,0,0,0,0,0,0,0,0,0,0,52,0,0,0,0,0,0,9,0,0,0,0,0,0,34,0,0,0,0,0,0,27,0,0,0] >;

D1214D10 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{14}D_{10}
% in TeX

G:=Group("D12:14D10");
// GroupNames label

G:=SmallGroup(480,1103);
// by ID

G=gap.SmallGroup(480,1103);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,100,675,185,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^10=d^2=1,b*a*b=a^-1,c*a*c^-1=a^7,d*a*d=a^5,c*b*c^-1=a^6*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽