# Extensions 1→N→G→Q→1 with N=C23×C6 and Q=D5

Direct product G=N×Q with N=C23×C6 and Q=D5
dρLabelID
D5×C23×C6240D5xC2^3xC6480,1210

Semidirect products G=N:Q with N=C23×C6 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C23×C6)⋊1D5 = C3×C24⋊D5φ: D5/C1D5 ⊆ Aut C23×C6305(C2^3xC6):1D5480,1194
(C23×C6)⋊2D5 = C24⋊D15φ: D5/C1D5 ⊆ Aut C23×C63010+(C2^3xC6):2D5480,1195
(C23×C6)⋊3D5 = C3×C242D5φ: D5/C5C2 ⊆ Aut C23×C6120(C2^3xC6):3D5480,746
(C23×C6)⋊4D5 = C2×C6×C5⋊D4φ: D5/C5C2 ⊆ Aut C23×C6240(C2^3xC6):4D5480,1149
(C23×C6)⋊5D5 = C245D15φ: D5/C5C2 ⊆ Aut C23×C6120(C2^3xC6):5D5480,918
(C23×C6)⋊6D5 = C22×C157D4φ: D5/C5C2 ⊆ Aut C23×C6240(C2^3xC6):6D5480,1179
(C23×C6)⋊7D5 = C24×D15φ: D5/C5C2 ⊆ Aut C23×C6240(C2^3xC6):7D5480,1212

Non-split extensions G=N.Q with N=C23×C6 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C23×C6).1D5 = C6×C23.D5φ: D5/C5C2 ⊆ Aut C23×C6240(C2^3xC6).1D5480,745
(C23×C6).2D5 = C2×C30.38D4φ: D5/C5C2 ⊆ Aut C23×C6240(C2^3xC6).2D5480,917
(C23×C6).3D5 = C23×Dic15φ: D5/C5C2 ⊆ Aut C23×C6480(C2^3xC6).3D5480,1178
(C23×C6).4D5 = Dic5×C22×C6central extension (φ=1)480(C2^3xC6).4D5480,1148

׿
×
𝔽