Extensions 1→N→G→Q→1 with N=Dic3 and Q=C4xD5

Direct product G=NxQ with N=Dic3 and Q=C4xD5
dρLabelID
C4xD5xDic3240C4xD5xDic3480,467

Semidirect products G=N:Q with N=Dic3 and Q=C4xD5
extensionφ:Q→Out NdρLabelID
Dic3:1(C4xD5) = Dic15:13D4φ: C4xD5/Dic5C2 ⊆ Out Dic3240Dic3:1(C4xD5)480,472
Dic3:2(C4xD5) = C15:20(C4xD4)φ: C4xD5/Dic5C2 ⊆ Out Dic3240Dic3:2(C4xD5)480,520
Dic3:3(C4xD5) = Dic3:4D20φ: C4xD5/C20C2 ⊆ Out Dic3240Dic3:3(C4xD5)480,471
Dic3:4(C4xD5) = C4xC3:D20φ: C4xD5/C20C2 ⊆ Out Dic3240Dic3:4(C4xD5)480,519
Dic3:5(C4xD5) = D5xDic3:C4φ: C4xD5/D10C2 ⊆ Out Dic3240Dic3:5(C4xD5)480,468
Dic3:6(C4xD5) = D30.Q8φ: C4xD5/D10C2 ⊆ Out Dic3240Dic3:6(C4xD5)480,480
Dic3:7(C4xD5) = C4xD30.C2φ: trivial image240Dic3:7(C4xD5)480,477

Non-split extensions G=N.Q with N=Dic3 and Q=C4xD5
extensionφ:Q→Out NdρLabelID
Dic3.1(C4xD5) = C40.34D6φ: C4xD5/Dic5C2 ⊆ Out Dic32404Dic3.1(C4xD5)480,342
Dic3.2(C4xD5) = C40.35D6φ: C4xD5/Dic5C2 ⊆ Out Dic32404Dic3.2(C4xD5)480,344
Dic3.3(C4xD5) = Dic5:5Dic6φ: C4xD5/Dic5C2 ⊆ Out Dic3480Dic3.3(C4xD5)480,399
Dic3.4(C4xD5) = Dic15:5Q8φ: C4xD5/Dic5C2 ⊆ Out Dic3480Dic3.4(C4xD5)480,401
Dic3.5(C4xD5) = C40.54D6φ: C4xD5/C20C2 ⊆ Out Dic32404Dic3.5(C4xD5)480,341
Dic3.6(C4xD5) = C40.55D6φ: C4xD5/C20C2 ⊆ Out Dic32404Dic3.6(C4xD5)480,343
Dic3.7(C4xD5) = Dic3:5Dic10φ: C4xD5/C20C2 ⊆ Out Dic3480Dic3.7(C4xD5)480,400
Dic3.8(C4xD5) = C4xC15:Q8φ: C4xD5/C20C2 ⊆ Out Dic3480Dic3.8(C4xD5)480,543
Dic3.9(C4xD5) = D5xC8:S3φ: C4xD5/D10C2 ⊆ Out Dic31204Dic3.9(C4xD5)480,320
Dic3.10(C4xD5) = C40:D6φ: C4xD5/D10C2 ⊆ Out Dic31204Dic3.10(C4xD5)480,322
Dic3.11(C4xD5) = D10.19(C4xS3)φ: C4xD5/D10C2 ⊆ Out Dic3240Dic3.11(C4xD5)480,470
Dic3.12(C4xD5) = D30.C2:C4φ: C4xD5/D10C2 ⊆ Out Dic3240Dic3.12(C4xD5)480,478
Dic3.13(C4xD5) = S3xC8xD5φ: trivial image1204Dic3.13(C4xD5)480,319
Dic3.14(C4xD5) = S3xC8:D5φ: trivial image1204Dic3.14(C4xD5)480,321
Dic3.15(C4xD5) = (D5xDic3):C4φ: trivial image240Dic3.15(C4xD5)480,469
Dic3.16(C4xD5) = D30.23(C2xC4)φ: trivial image240Dic3.16(C4xD5)480,479

׿
x
:
Z
F
o
wr
Q
<