Copied to
clipboard

G = D5×C8⋊S3order 480 = 25·3·5

Direct product of D5 and C8⋊S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C8⋊S3, C4016D6, C2426D10, C12022C22, C60.167C23, C3⋊C819D10, (C8×D5)⋊7S3, C812(S3×D5), C52C828D6, D6.5(C4×D5), C40⋊S39C2, C31(D5×M4(2)), (D5×C24)⋊10C2, (C4×D5).99D6, C158(C2×M4(2)), D30.16(C2×C4), (C4×S3).30D10, D10.29(C4×S3), (C3×D5)⋊2M4(2), D6.Dic59C2, D30.C2.1C4, (D5×Dic3).1C4, Dic3.9(C4×D5), (S3×Dic5).1C4, C153C823C22, D30.5C49C2, C30.33(C22×C4), Dic5.34(C4×S3), (S3×C20).30C22, C20.164(C22×S3), Dic15.17(C2×C4), (C4×D15).36C22, (D5×C12).98C22, C12.164(C22×D5), (D5×C3⋊C8)⋊8C2, C6.2(C2×C4×D5), C2.5(C4×S3×D5), C54(C2×C8⋊S3), (C4×S3×D5).6C2, (C2×S3×D5).1C4, C10.33(S3×C2×C4), C4.137(C2×S3×D5), (C5×C8⋊S3)⋊5C2, (C5×C3⋊C8)⋊19C22, (C6×D5).31(C2×C4), (S3×C10).16(C2×C4), (C3×C52C8)⋊33C22, (C3×Dic5).36(C2×C4), (C5×Dic3).17(C2×C4), SmallGroup(480,320)

Series: Derived Chief Lower central Upper central

C1C30 — D5×C8⋊S3
C1C5C15C30C60D5×C12C4×S3×D5 — D5×C8⋊S3
C15C30 — D5×C8⋊S3
C1C4C8

Generators and relations for D5×C8⋊S3
 G = < a,b,c,d,e | a5=b2=c8=d3=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c5, ede=d-1 >

Subgroups: 636 in 136 conjugacy classes, 54 normal (50 characteristic)
C1, C2, C2 [×4], C3, C4, C4 [×3], C22 [×5], C5, S3 [×2], C6, C6 [×2], C8, C8 [×3], C2×C4 [×6], C23, D5 [×2], D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6 [×3], C2×C6, C15, C2×C8 [×2], M4(2) [×4], C22×C4, Dic5, Dic5, C20, C20, D10, D10 [×3], C2×C10, C3⋊C8, C3⋊C8, C24, C24, C4×S3, C4×S3 [×3], C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5 [×2], D15, C30, C2×M4(2), C52C8, C52C8, C40, C40, C4×D5, C4×D5 [×3], C2×Dic5, C2×C20, C22×D5, C8⋊S3, C8⋊S3 [×3], C2×C3⋊C8, C2×C24, S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5 [×2], C6×D5, S3×C10, D30, C8×D5, C8×D5, C8⋊D5 [×2], C4.Dic5, C5×M4(2), C2×C4×D5, C2×C8⋊S3, C5×C3⋊C8, C3×C52C8, C153C8, C120, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C2×S3×D5, D5×M4(2), D5×C3⋊C8, D6.Dic5, D30.5C4, D5×C24, C5×C8⋊S3, C40⋊S3, C4×S3×D5, D5×C8⋊S3
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], S3, C2×C4 [×6], C23, D5, D6 [×3], M4(2) [×2], C22×C4, D10 [×3], C4×S3 [×2], C22×S3, C2×M4(2), C4×D5 [×2], C22×D5, C8⋊S3 [×2], S3×C2×C4, S3×D5, C2×C4×D5, C2×C8⋊S3, C2×S3×D5, D5×M4(2), C4×S3×D5, D5×C8⋊S3

Smallest permutation representation of D5×C8⋊S3
On 120 points
Generators in S120
(1 73 113 65 99)(2 74 114 66 100)(3 75 115 67 101)(4 76 116 68 102)(5 77 117 69 103)(6 78 118 70 104)(7 79 119 71 97)(8 80 120 72 98)(9 96 54 109 45)(10 89 55 110 46)(11 90 56 111 47)(12 91 49 112 48)(13 92 50 105 41)(14 93 51 106 42)(15 94 52 107 43)(16 95 53 108 44)(17 34 29 63 83)(18 35 30 64 84)(19 36 31 57 85)(20 37 32 58 86)(21 38 25 59 87)(22 39 26 60 88)(23 40 27 61 81)(24 33 28 62 82)
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 97)(8 98)(9 109)(10 110)(11 111)(12 112)(13 105)(14 106)(15 107)(16 108)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 82)(34 83)(35 84)(36 85)(37 86)(38 87)(39 88)(40 81)(49 91)(50 92)(51 93)(52 94)(53 95)(54 96)(55 89)(56 90)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 50 64)(2 51 57)(3 52 58)(4 53 59)(5 54 60)(6 55 61)(7 56 62)(8 49 63)(9 39 69)(10 40 70)(11 33 71)(12 34 72)(13 35 65)(14 36 66)(15 37 67)(16 38 68)(17 120 48)(18 113 41)(19 114 42)(20 115 43)(21 116 44)(22 117 45)(23 118 46)(24 119 47)(25 102 95)(26 103 96)(27 104 89)(28 97 90)(29 98 91)(30 99 92)(31 100 93)(32 101 94)(73 105 84)(74 106 85)(75 107 86)(76 108 87)(77 109 88)(78 110 81)(79 111 82)(80 112 83)
(2 6)(4 8)(9 39)(10 36)(11 33)(12 38)(13 35)(14 40)(15 37)(16 34)(17 44)(18 41)(19 46)(20 43)(21 48)(22 45)(23 42)(24 47)(25 91)(26 96)(27 93)(28 90)(29 95)(30 92)(31 89)(32 94)(49 59)(50 64)(51 61)(52 58)(53 63)(54 60)(55 57)(56 62)(66 70)(68 72)(74 78)(76 80)(81 106)(82 111)(83 108)(84 105)(85 110)(86 107)(87 112)(88 109)(98 102)(100 104)(114 118)(116 120)

G:=sub<Sym(120)| (1,73,113,65,99)(2,74,114,66,100)(3,75,115,67,101)(4,76,116,68,102)(5,77,117,69,103)(6,78,118,70,104)(7,79,119,71,97)(8,80,120,72,98)(9,96,54,109,45)(10,89,55,110,46)(11,90,56,111,47)(12,91,49,112,48)(13,92,50,105,41)(14,93,51,106,42)(15,94,52,107,43)(16,95,53,108,44)(17,34,29,63,83)(18,35,30,64,84)(19,36,31,57,85)(20,37,32,58,86)(21,38,25,59,87)(22,39,26,60,88)(23,40,27,61,81)(24,33,28,62,82), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,109)(10,110)(11,111)(12,112)(13,105)(14,106)(15,107)(16,108)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,82)(34,83)(35,84)(36,85)(37,86)(38,87)(39,88)(40,81)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,89)(56,90)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,50,64)(2,51,57)(3,52,58)(4,53,59)(5,54,60)(6,55,61)(7,56,62)(8,49,63)(9,39,69)(10,40,70)(11,33,71)(12,34,72)(13,35,65)(14,36,66)(15,37,67)(16,38,68)(17,120,48)(18,113,41)(19,114,42)(20,115,43)(21,116,44)(22,117,45)(23,118,46)(24,119,47)(25,102,95)(26,103,96)(27,104,89)(28,97,90)(29,98,91)(30,99,92)(31,100,93)(32,101,94)(73,105,84)(74,106,85)(75,107,86)(76,108,87)(77,109,88)(78,110,81)(79,111,82)(80,112,83), (2,6)(4,8)(9,39)(10,36)(11,33)(12,38)(13,35)(14,40)(15,37)(16,34)(17,44)(18,41)(19,46)(20,43)(21,48)(22,45)(23,42)(24,47)(25,91)(26,96)(27,93)(28,90)(29,95)(30,92)(31,89)(32,94)(49,59)(50,64)(51,61)(52,58)(53,63)(54,60)(55,57)(56,62)(66,70)(68,72)(74,78)(76,80)(81,106)(82,111)(83,108)(84,105)(85,110)(86,107)(87,112)(88,109)(98,102)(100,104)(114,118)(116,120)>;

G:=Group( (1,73,113,65,99)(2,74,114,66,100)(3,75,115,67,101)(4,76,116,68,102)(5,77,117,69,103)(6,78,118,70,104)(7,79,119,71,97)(8,80,120,72,98)(9,96,54,109,45)(10,89,55,110,46)(11,90,56,111,47)(12,91,49,112,48)(13,92,50,105,41)(14,93,51,106,42)(15,94,52,107,43)(16,95,53,108,44)(17,34,29,63,83)(18,35,30,64,84)(19,36,31,57,85)(20,37,32,58,86)(21,38,25,59,87)(22,39,26,60,88)(23,40,27,61,81)(24,33,28,62,82), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,109)(10,110)(11,111)(12,112)(13,105)(14,106)(15,107)(16,108)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,82)(34,83)(35,84)(36,85)(37,86)(38,87)(39,88)(40,81)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,89)(56,90)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,50,64)(2,51,57)(3,52,58)(4,53,59)(5,54,60)(6,55,61)(7,56,62)(8,49,63)(9,39,69)(10,40,70)(11,33,71)(12,34,72)(13,35,65)(14,36,66)(15,37,67)(16,38,68)(17,120,48)(18,113,41)(19,114,42)(20,115,43)(21,116,44)(22,117,45)(23,118,46)(24,119,47)(25,102,95)(26,103,96)(27,104,89)(28,97,90)(29,98,91)(30,99,92)(31,100,93)(32,101,94)(73,105,84)(74,106,85)(75,107,86)(76,108,87)(77,109,88)(78,110,81)(79,111,82)(80,112,83), (2,6)(4,8)(9,39)(10,36)(11,33)(12,38)(13,35)(14,40)(15,37)(16,34)(17,44)(18,41)(19,46)(20,43)(21,48)(22,45)(23,42)(24,47)(25,91)(26,96)(27,93)(28,90)(29,95)(30,92)(31,89)(32,94)(49,59)(50,64)(51,61)(52,58)(53,63)(54,60)(55,57)(56,62)(66,70)(68,72)(74,78)(76,80)(81,106)(82,111)(83,108)(84,105)(85,110)(86,107)(87,112)(88,109)(98,102)(100,104)(114,118)(116,120) );

G=PermutationGroup([(1,73,113,65,99),(2,74,114,66,100),(3,75,115,67,101),(4,76,116,68,102),(5,77,117,69,103),(6,78,118,70,104),(7,79,119,71,97),(8,80,120,72,98),(9,96,54,109,45),(10,89,55,110,46),(11,90,56,111,47),(12,91,49,112,48),(13,92,50,105,41),(14,93,51,106,42),(15,94,52,107,43),(16,95,53,108,44),(17,34,29,63,83),(18,35,30,64,84),(19,36,31,57,85),(20,37,32,58,86),(21,38,25,59,87),(22,39,26,60,88),(23,40,27,61,81),(24,33,28,62,82)], [(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,97),(8,98),(9,109),(10,110),(11,111),(12,112),(13,105),(14,106),(15,107),(16,108),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,82),(34,83),(35,84),(36,85),(37,86),(38,87),(39,88),(40,81),(49,91),(50,92),(51,93),(52,94),(53,95),(54,96),(55,89),(56,90),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,50,64),(2,51,57),(3,52,58),(4,53,59),(5,54,60),(6,55,61),(7,56,62),(8,49,63),(9,39,69),(10,40,70),(11,33,71),(12,34,72),(13,35,65),(14,36,66),(15,37,67),(16,38,68),(17,120,48),(18,113,41),(19,114,42),(20,115,43),(21,116,44),(22,117,45),(23,118,46),(24,119,47),(25,102,95),(26,103,96),(27,104,89),(28,97,90),(29,98,91),(30,99,92),(31,100,93),(32,101,94),(73,105,84),(74,106,85),(75,107,86),(76,108,87),(77,109,88),(78,110,81),(79,111,82),(80,112,83)], [(2,6),(4,8),(9,39),(10,36),(11,33),(12,38),(13,35),(14,40),(15,37),(16,34),(17,44),(18,41),(19,46),(20,43),(21,48),(22,45),(23,42),(24,47),(25,91),(26,96),(27,93),(28,90),(29,95),(30,92),(31,89),(32,94),(49,59),(50,64),(51,61),(52,58),(53,63),(54,60),(55,57),(56,62),(66,70),(68,72),(74,78),(76,80),(81,106),(82,111),(83,108),(84,105),(85,110),(86,107),(87,112),(88,109),(98,102),(100,104),(114,118),(116,120)])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B6C8A8B8C8D8E8F8G8H10A10B10C10D12A12B12C12D15A15B20A20B20C20D20E20F24A24B24C24D24E24F24G24H30A30B40A40B40C40D40E40F40G40H60A60B60C60D120A···120H
order122222344444455666888888881010101012121212151520202020202024242424242424243030404040404040404060606060120···120
size115563021155630222101022661010303022121222101044222212122222101010104444441212121244444···4

72 irreducible representations

dim1111111111112222222222222244444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D5D6D6D6M4(2)D10D10D10C4×S3C4×S3C4×D5C4×D5C8⋊S3S3×D5C2×S3×D5D5×M4(2)C4×S3×D5D5×C8⋊S3
kernelD5×C8⋊S3D5×C3⋊C8D6.Dic5D30.5C4D5×C24C5×C8⋊S3C40⋊S3C4×S3×D5D5×Dic3S3×Dic5D30.C2C2×S3×D5C8×D5C8⋊S3C52C8C40C4×D5C3×D5C3⋊C8C24C4×S3Dic5D10Dic3D6D5C8C4C3C2C1
# reps1111111122221211142222244822448

Matrix representation of D5×C8⋊S3 in GL6(𝔽241)

5110000
24000000
001000
000100
000010
000001
,
1510000
02400000
001000
000100
000010
000001
,
100000
010000
001000
000100
000064239
000088177
,
100000
010000
000100
0024024000
000010
000001
,
100000
010000
001000
0024024000
000010
000064240

G:=sub<GL(6,GF(241))| [51,240,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,51,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,88,0,0,0,0,239,177],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,1,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,0,0,0,1,64,0,0,0,0,0,240] >;

D5×C8⋊S3 in GAP, Magma, Sage, TeX

D_5\times C_8\rtimes S_3
% in TeX

G:=Group("D5xC8:S3");
// GroupNames label

G:=SmallGroup(480,320);
// by ID

G=gap.SmallGroup(480,320);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,58,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^8=d^3=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^5,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽