Copied to
clipboard

G = S3xC8xD5order 480 = 25·3·5

Direct product of C8, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3xC8xD5, C40:24D6, C24:25D10, C120:21C22, C60.166C23, C3:C8:31D10, (S3xC40):6C2, D15:3(C2xC8), (D5xC24):9C2, C5:2C8:31D6, C15:4(C22xC8), D6.9(C4xD5), (C8xD15):12C2, (C4xD5).98D6, D10.28(C4xS3), (C4xS3).46D10, D30.26(C2xC4), D30.C2.7C4, (D5xDic3).8C4, (S3xDic5).7C4, D15:2C8:14C2, C15:3C8:40C22, C30.32(C22xC4), Dic5.33(C4xS3), Dic3.13(C4xD5), (S3xC20).49C22, C20.163(C22xS3), Dic15.33(C2xC4), (D5xC12).97C22, (C4xD15).60C22, C12.163(C22xD5), C5:4(S3xC2xC8), C3:1(D5xC2xC8), C6.1(C2xC4xD5), C2.1(C4xS3xD5), (D5xC3:C8):14C2, (C2xS3xD5).8C4, (C5xS3):3(C2xC8), (C3xD5):2(C2xC8), C10.32(S3xC2xC4), (C4xS3xD5).13C2, C4.136(C2xS3xD5), (S3xC5:2C8):14C2, (C5xC3:C8):32C22, (C6xD5).30(C2xC4), (S3xC10).24(C2xC4), (C3xC5:2C8):32C22, (C3xDic5).35(C2xC4), (C5xDic3).29(C2xC4), SmallGroup(480,319)

Series: Derived Chief Lower central Upper central

C1C15 — S3xC8xD5
C1C5C15C30C60D5xC12C4xS3xD5 — S3xC8xD5
C15 — S3xC8xD5
C1C8

Generators and relations for S3xC8xD5
 G = < a,b,c,d,e | a8=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 636 in 152 conjugacy classes, 64 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C8, C8, C2xC4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C15, C2xC8, C22xC4, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C3:C8, C3:C8, C24, C24, C4xS3, C4xS3, C2xDic3, C2xC12, C22xS3, C5xS3, C3xD5, D15, C30, C22xC8, C5:2C8, C5:2C8, C40, C40, C4xD5, C4xD5, C2xDic5, C2xC20, C22xD5, S3xC8, S3xC8, C2xC3:C8, C2xC24, S3xC2xC4, C5xDic3, C3xDic5, Dic15, C60, S3xD5, C6xD5, S3xC10, D30, C8xD5, C8xD5, C2xC5:2C8, C2xC40, C2xC4xD5, S3xC2xC8, C5xC3:C8, C3xC5:2C8, C15:3C8, C120, D5xDic3, S3xDic5, D30.C2, D5xC12, S3xC20, C4xD15, C2xS3xD5, D5xC2xC8, D5xC3:C8, S3xC5:2C8, D15:2C8, D5xC24, S3xC40, C8xD15, C4xS3xD5, S3xC8xD5
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, C23, D5, D6, C2xC8, C22xC4, D10, C4xS3, C22xS3, C22xC8, C4xD5, C22xD5, S3xC8, S3xC2xC4, S3xD5, C8xD5, C2xC4xD5, S3xC2xC8, C2xS3xD5, D5xC2xC8, C4xS3xD5, S3xC8xD5

Smallest permutation representation of S3xC8xD5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 64 50)(2 57 51)(3 58 52)(4 59 53)(5 60 54)(6 61 55)(7 62 56)(8 63 49)(9 69 39)(10 70 40)(11 71 33)(12 72 34)(13 65 35)(14 66 36)(15 67 37)(16 68 38)(17 48 120)(18 41 113)(19 42 114)(20 43 115)(21 44 116)(22 45 117)(23 46 118)(24 47 119)(25 95 102)(26 96 103)(27 89 104)(28 90 97)(29 91 98)(30 92 99)(31 93 100)(32 94 101)(73 84 105)(74 85 106)(75 86 107)(76 87 108)(77 88 109)(78 81 110)(79 82 111)(80 83 112)
(9 39)(10 40)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 48)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 95)(26 96)(27 89)(28 90)(29 91)(30 92)(31 93)(32 94)(49 63)(50 64)(51 57)(52 58)(53 59)(54 60)(55 61)(56 62)(81 110)(82 111)(83 112)(84 105)(85 106)(86 107)(87 108)(88 109)
(1 73 113 65 99)(2 74 114 66 100)(3 75 115 67 101)(4 76 116 68 102)(5 77 117 69 103)(6 78 118 70 104)(7 79 119 71 97)(8 80 120 72 98)(9 96 54 109 45)(10 89 55 110 46)(11 90 56 111 47)(12 91 49 112 48)(13 92 50 105 41)(14 93 51 106 42)(15 94 52 107 43)(16 95 53 108 44)(17 34 29 63 83)(18 35 30 64 84)(19 36 31 57 85)(20 37 32 58 86)(21 38 25 59 87)(22 39 26 60 88)(23 40 27 61 81)(24 33 28 62 82)
(1 103)(2 104)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 105)(10 106)(11 107)(12 108)(13 109)(14 110)(15 111)(16 112)(17 21)(18 22)(19 23)(20 24)(25 63)(26 64)(27 57)(28 58)(29 59)(30 60)(31 61)(32 62)(33 86)(34 87)(35 88)(36 81)(37 82)(38 83)(39 84)(40 85)(41 45)(42 46)(43 47)(44 48)(49 95)(50 96)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)(65 77)(66 78)(67 79)(68 80)(69 73)(70 74)(71 75)(72 76)(113 117)(114 118)(115 119)(116 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,64,50)(2,57,51)(3,58,52)(4,59,53)(5,60,54)(6,61,55)(7,62,56)(8,63,49)(9,69,39)(10,70,40)(11,71,33)(12,72,34)(13,65,35)(14,66,36)(15,67,37)(16,68,38)(17,48,120)(18,41,113)(19,42,114)(20,43,115)(21,44,116)(22,45,117)(23,46,118)(24,47,119)(25,95,102)(26,96,103)(27,89,104)(28,90,97)(29,91,98)(30,92,99)(31,93,100)(32,94,101)(73,84,105)(74,85,106)(75,86,107)(76,87,108)(77,88,109)(78,81,110)(79,82,111)(80,83,112), (9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109), (1,73,113,65,99)(2,74,114,66,100)(3,75,115,67,101)(4,76,116,68,102)(5,77,117,69,103)(6,78,118,70,104)(7,79,119,71,97)(8,80,120,72,98)(9,96,54,109,45)(10,89,55,110,46)(11,90,56,111,47)(12,91,49,112,48)(13,92,50,105,41)(14,93,51,106,42)(15,94,52,107,43)(16,95,53,108,44)(17,34,29,63,83)(18,35,30,64,84)(19,36,31,57,85)(20,37,32,58,86)(21,38,25,59,87)(22,39,26,60,88)(23,40,27,61,81)(24,33,28,62,82), (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,105)(10,106)(11,107)(12,108)(13,109)(14,110)(15,111)(16,112)(17,21)(18,22)(19,23)(20,24)(25,63)(26,64)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,86)(34,87)(35,88)(36,81)(37,82)(38,83)(39,84)(40,85)(41,45)(42,46)(43,47)(44,48)(49,95)(50,96)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(65,77)(66,78)(67,79)(68,80)(69,73)(70,74)(71,75)(72,76)(113,117)(114,118)(115,119)(116,120)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,64,50)(2,57,51)(3,58,52)(4,59,53)(5,60,54)(6,61,55)(7,62,56)(8,63,49)(9,69,39)(10,70,40)(11,71,33)(12,72,34)(13,65,35)(14,66,36)(15,67,37)(16,68,38)(17,48,120)(18,41,113)(19,42,114)(20,43,115)(21,44,116)(22,45,117)(23,46,118)(24,47,119)(25,95,102)(26,96,103)(27,89,104)(28,90,97)(29,91,98)(30,92,99)(31,93,100)(32,94,101)(73,84,105)(74,85,106)(75,86,107)(76,87,108)(77,88,109)(78,81,110)(79,82,111)(80,83,112), (9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109), (1,73,113,65,99)(2,74,114,66,100)(3,75,115,67,101)(4,76,116,68,102)(5,77,117,69,103)(6,78,118,70,104)(7,79,119,71,97)(8,80,120,72,98)(9,96,54,109,45)(10,89,55,110,46)(11,90,56,111,47)(12,91,49,112,48)(13,92,50,105,41)(14,93,51,106,42)(15,94,52,107,43)(16,95,53,108,44)(17,34,29,63,83)(18,35,30,64,84)(19,36,31,57,85)(20,37,32,58,86)(21,38,25,59,87)(22,39,26,60,88)(23,40,27,61,81)(24,33,28,62,82), (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,105)(10,106)(11,107)(12,108)(13,109)(14,110)(15,111)(16,112)(17,21)(18,22)(19,23)(20,24)(25,63)(26,64)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,86)(34,87)(35,88)(36,81)(37,82)(38,83)(39,84)(40,85)(41,45)(42,46)(43,47)(44,48)(49,95)(50,96)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(65,77)(66,78)(67,79)(68,80)(69,73)(70,74)(71,75)(72,76)(113,117)(114,118)(115,119)(116,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,64,50),(2,57,51),(3,58,52),(4,59,53),(5,60,54),(6,61,55),(7,62,56),(8,63,49),(9,69,39),(10,70,40),(11,71,33),(12,72,34),(13,65,35),(14,66,36),(15,67,37),(16,68,38),(17,48,120),(18,41,113),(19,42,114),(20,43,115),(21,44,116),(22,45,117),(23,46,118),(24,47,119),(25,95,102),(26,96,103),(27,89,104),(28,90,97),(29,91,98),(30,92,99),(31,93,100),(32,94,101),(73,84,105),(74,85,106),(75,86,107),(76,87,108),(77,88,109),(78,81,110),(79,82,111),(80,83,112)], [(9,39),(10,40),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,48),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,95),(26,96),(27,89),(28,90),(29,91),(30,92),(31,93),(32,94),(49,63),(50,64),(51,57),(52,58),(53,59),(54,60),(55,61),(56,62),(81,110),(82,111),(83,112),(84,105),(85,106),(86,107),(87,108),(88,109)], [(1,73,113,65,99),(2,74,114,66,100),(3,75,115,67,101),(4,76,116,68,102),(5,77,117,69,103),(6,78,118,70,104),(7,79,119,71,97),(8,80,120,72,98),(9,96,54,109,45),(10,89,55,110,46),(11,90,56,111,47),(12,91,49,112,48),(13,92,50,105,41),(14,93,51,106,42),(15,94,52,107,43),(16,95,53,108,44),(17,34,29,63,83),(18,35,30,64,84),(19,36,31,57,85),(20,37,32,58,86),(21,38,25,59,87),(22,39,26,60,88),(23,40,27,61,81),(24,33,28,62,82)], [(1,103),(2,104),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,105),(10,106),(11,107),(12,108),(13,109),(14,110),(15,111),(16,112),(17,21),(18,22),(19,23),(20,24),(25,63),(26,64),(27,57),(28,58),(29,59),(30,60),(31,61),(32,62),(33,86),(34,87),(35,88),(36,81),(37,82),(38,83),(39,84),(40,85),(41,45),(42,46),(43,47),(44,48),(49,95),(50,96),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94),(65,77),(66,78),(67,79),(68,80),(69,73),(70,74),(71,75),(72,76),(113,117),(114,118),(115,119),(116,120)]])

96 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C8A8B8C8D8E8F8G8H8I8J8K8L8M8N8O8P10A10B10C10D10E10F12A12B12C12D15A15B20A20B20C20D20E20F20G20H24A24B24C24D24E24F24G24H30A30B40A···40H40I···40P60A60B60C60D120A···120H
order1222222234444444455666888888888888888810101010101012121212151520202020202020202424242424242424303040···4040···4060606060120···120
size1133551515211335515152221010111133335555151515152266662210104422226666222210101010442···26···644444···4

96 irreducible representations

dim1111111111111222222222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4C8S3D5D6D6D6D10D10D10C4xS3C4xS3C4xD5C4xD5S3xC8C8xD5S3xD5C2xS3xD5C4xS3xD5S3xC8xD5
kernelS3xC8xD5D5xC3:C8S3xC5:2C8D15:2C8D5xC24S3xC40C8xD15C4xS3xD5D5xDic3S3xDic5D30.C2C2xS3xD5S3xD5C8xD5S3xC8C5:2C8C40C4xD5C3:C8C24C4xS3Dic5D10Dic3D6D5S3C8C4C2C1
# reps111111112222161211122222448162248

Matrix representation of S3xC8xD5 in GL4(F241) generated by

8000
0800
0010
0001
,
1000
0100
0023949
001771
,
1000
0100
0010
0064240
,
0100
24018900
0010
0001
,
024000
240000
0010
0001
G:=sub<GL(4,GF(241))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,239,177,0,0,49,1],[1,0,0,0,0,1,0,0,0,0,1,64,0,0,0,240],[0,240,0,0,1,189,0,0,0,0,1,0,0,0,0,1],[0,240,0,0,240,0,0,0,0,0,1,0,0,0,0,1] >;

S3xC8xD5 in GAP, Magma, Sage, TeX

S_3\times C_8\times D_5
% in TeX

G:=Group("S3xC8xD5");
// GroupNames label

G:=SmallGroup(480,319);
// by ID

G=gap.SmallGroup(480,319);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,58,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<