Extensions 1→N→G→Q→1 with N=C5×D4.S3 and Q=C2

Direct product G=N×Q with N=C5×D4.S3 and Q=C2
dρLabelID
C10×D4.S3240C10xD4.S3480,812

Semidirect products G=N:Q with N=C5×D4.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D4.S3)⋊1C2 = D5×D4.S3φ: C2/C1C2 ⊆ Out C5×D4.S31208-(C5xD4.S3):1C2480,559
(C5×D4.S3)⋊2C2 = C60.8C23φ: C2/C1C2 ⊆ Out C5×D4.S32408-(C5xD4.S3):2C2480,560
(C5×D4.S3)⋊3C2 = Dic10⋊D6φ: C2/C1C2 ⊆ Out C5×D4.S31208+(C5xD4.S3):3C2480,563
(C5×D4.S3)⋊4C2 = D30.9D4φ: C2/C1C2 ⊆ Out C5×D4.S32408-(C5xD4.S3):4C2480,564
(C5×D4.S3)⋊5C2 = D20.9D6φ: C2/C1C2 ⊆ Out C5×D4.S31208+(C5xD4.S3):5C2480,567
(C5×D4.S3)⋊6C2 = C60.16C23φ: C2/C1C2 ⊆ Out C5×D4.S32408+(C5xD4.S3):6C2480,568
(C5×D4.S3)⋊7C2 = D20.10D6φ: C2/C1C2 ⊆ Out C5×D4.S32408-(C5xD4.S3):7C2480,573
(C5×D4.S3)⋊8C2 = Dic6⋊D10φ: C2/C1C2 ⊆ Out C5×D4.S31208+(C5xD4.S3):8C2480,574
(C5×D4.S3)⋊9C2 = C5×D8⋊S3φ: C2/C1C2 ⊆ Out C5×D4.S31204(C5xD4.S3):9C2480,790
(C5×D4.S3)⋊10C2 = C5×D83S3φ: C2/C1C2 ⊆ Out C5×D4.S32404(C5xD4.S3):10C2480,791
(C5×D4.S3)⋊11C2 = C5×S3×SD16φ: C2/C1C2 ⊆ Out C5×D4.S31204(C5xD4.S3):11C2480,792
(C5×D4.S3)⋊12C2 = C5×D4.D6φ: C2/C1C2 ⊆ Out C5×D4.S32404(C5xD4.S3):12C2480,794
(C5×D4.S3)⋊13C2 = C5×D126C22φ: C2/C1C2 ⊆ Out C5×D4.S31204(C5xD4.S3):13C2480,811
(C5×D4.S3)⋊14C2 = C5×Q8.14D6φ: C2/C1C2 ⊆ Out C5×D4.S32404(C5xD4.S3):14C2480,830
(C5×D4.S3)⋊15C2 = C5×Q8.13D6φ: trivial image2404(C5xD4.S3):15C2480,829


׿
×
𝔽