Copied to
clipboard

G = C5×S3×SD16order 480 = 25·3·5

Direct product of C5, S3 and SD16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×S3×SD16, C4027D6, C12032C22, C60.220C23, C85(S3×C10), (S3×D4).C10, (S3×C8)⋊4C10, C245(C2×C10), (S3×Q8)⋊1C10, Q82(S3×C10), (C5×Q8)⋊17D6, C32(C10×SD16), (S3×C40)⋊13C2, C24⋊C25C10, D4.S33C10, (C5×D4).26D6, D4.2(S3×C10), D6.13(C5×D4), C6.30(D4×C10), C1521(C2×SD16), Q82S31C10, (C3×SD16)⋊3C10, Dic62(C2×C10), (S3×C10).49D4, D12.2(C2×C10), C10.184(S3×D4), C30.366(C2×D4), Dic3.4(C5×D4), (C15×SD16)⋊11C2, C12.4(C22×C10), (C5×Dic3).31D4, (Q8×C15)⋊16C22, (S3×C20).58C22, C20.193(C22×S3), (C5×Dic6)⋊17C22, (C5×D12).31C22, (D4×C15).31C22, (C5×S3×Q8)⋊8C2, C3⋊C86(C2×C10), C4.4(S3×C2×C10), (C5×S3×D4).2C2, C2.18(C5×S3×D4), (C5×C3⋊C8)⋊39C22, (C3×Q8)⋊1(C2×C10), (C5×C24⋊C2)⋊13C2, (C4×S3).9(C2×C10), (C5×D4.S3)⋊11C2, (C5×Q82S3)⋊9C2, (C3×D4).2(C2×C10), SmallGroup(480,792)

Series: Derived Chief Lower central Upper central

C1C12 — C5×S3×SD16
C1C3C6C12C60S3×C20C5×S3×D4 — C5×S3×SD16
C3C6C12 — C5×S3×SD16
C1C10C20C5×SD16

Generators and relations for C5×S3×SD16
 G = < a,b,c,d,e | a5=b3=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >

Subgroups: 372 in 136 conjugacy classes, 58 normal (54 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×C8, SD16, SD16, C2×D4, C2×Q8, C20, C20, C2×C10, C3⋊C8, C24, Dic6, Dic6, C4×S3, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C5×S3, C5×S3, C30, C30, C2×SD16, C40, C40, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, S3×C8, C24⋊C2, D4.S3, Q82S3, C3×SD16, S3×D4, S3×Q8, C5×Dic3, C5×Dic3, C60, C60, S3×C10, S3×C10, C2×C30, C2×C40, C5×SD16, C5×SD16, D4×C10, Q8×C10, S3×SD16, C5×C3⋊C8, C120, C5×Dic6, C5×Dic6, S3×C20, S3×C20, C5×D12, C5×C3⋊D4, D4×C15, Q8×C15, S3×C2×C10, C10×SD16, S3×C40, C5×C24⋊C2, C5×D4.S3, C5×Q82S3, C15×SD16, C5×S3×D4, C5×S3×Q8, C5×S3×SD16
Quotients: C1, C2, C22, C5, S3, D4, C23, C10, D6, SD16, C2×D4, C2×C10, C22×S3, C5×S3, C2×SD16, C5×D4, C22×C10, S3×D4, S3×C10, C5×SD16, D4×C10, S3×SD16, S3×C2×C10, C10×SD16, C5×S3×D4, C5×S3×SD16

Smallest permutation representation of C5×S3×SD16
On 120 points
Generators in S120
(1 58 31 56 88)(2 59 32 49 81)(3 60 25 50 82)(4 61 26 51 83)(5 62 27 52 84)(6 63 28 53 85)(7 64 29 54 86)(8 57 30 55 87)(9 46 110 18 40)(10 47 111 19 33)(11 48 112 20 34)(12 41 105 21 35)(13 42 106 22 36)(14 43 107 23 37)(15 44 108 24 38)(16 45 109 17 39)(65 94 115 78 99)(66 95 116 79 100)(67 96 117 80 101)(68 89 118 73 102)(69 90 119 74 103)(70 91 120 75 104)(71 92 113 76 97)(72 93 114 77 98)
(1 22 103)(2 23 104)(3 24 97)(4 17 98)(5 18 99)(6 19 100)(7 20 101)(8 21 102)(9 94 27)(10 95 28)(11 96 29)(12 89 30)(13 90 31)(14 91 32)(15 92 25)(16 93 26)(33 66 63)(34 67 64)(35 68 57)(36 69 58)(37 70 59)(38 71 60)(39 72 61)(40 65 62)(41 118 55)(42 119 56)(43 120 49)(44 113 50)(45 114 51)(46 115 52)(47 116 53)(48 117 54)(73 87 105)(74 88 106)(75 81 107)(76 82 108)(77 83 109)(78 84 110)(79 85 111)(80 86 112)
(9 94)(10 95)(11 96)(12 89)(13 90)(14 91)(15 92)(16 93)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 97)(33 66)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 65)(41 118)(42 119)(43 120)(44 113)(45 114)(46 115)(47 116)(48 117)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(17 23)(19 21)(20 24)(25 29)(26 32)(28 30)(33 35)(34 38)(37 39)(41 47)(43 45)(44 48)(49 51)(50 54)(53 55)(57 63)(59 61)(60 64)(66 68)(67 71)(70 72)(73 79)(75 77)(76 80)(81 83)(82 86)(85 87)(89 95)(91 93)(92 96)(97 101)(98 104)(100 102)(105 111)(107 109)(108 112)(113 117)(114 120)(116 118)

G:=sub<Sym(120)| (1,58,31,56,88)(2,59,32,49,81)(3,60,25,50,82)(4,61,26,51,83)(5,62,27,52,84)(6,63,28,53,85)(7,64,29,54,86)(8,57,30,55,87)(9,46,110,18,40)(10,47,111,19,33)(11,48,112,20,34)(12,41,105,21,35)(13,42,106,22,36)(14,43,107,23,37)(15,44,108,24,38)(16,45,109,17,39)(65,94,115,78,99)(66,95,116,79,100)(67,96,117,80,101)(68,89,118,73,102)(69,90,119,74,103)(70,91,120,75,104)(71,92,113,76,97)(72,93,114,77,98), (1,22,103)(2,23,104)(3,24,97)(4,17,98)(5,18,99)(6,19,100)(7,20,101)(8,21,102)(9,94,27)(10,95,28)(11,96,29)(12,89,30)(13,90,31)(14,91,32)(15,92,25)(16,93,26)(33,66,63)(34,67,64)(35,68,57)(36,69,58)(37,70,59)(38,71,60)(39,72,61)(40,65,62)(41,118,55)(42,119,56)(43,120,49)(44,113,50)(45,114,51)(46,115,52)(47,116,53)(48,117,54)(73,87,105)(74,88,106)(75,81,107)(76,82,108)(77,83,109)(78,84,110)(79,85,111)(80,86,112), (9,94)(10,95)(11,96)(12,89)(13,90)(14,91)(15,92)(16,93)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,97)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,65)(41,118)(42,119)(43,120)(44,113)(45,114)(46,115)(47,116)(48,117)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,29)(26,32)(28,30)(33,35)(34,38)(37,39)(41,47)(43,45)(44,48)(49,51)(50,54)(53,55)(57,63)(59,61)(60,64)(66,68)(67,71)(70,72)(73,79)(75,77)(76,80)(81,83)(82,86)(85,87)(89,95)(91,93)(92,96)(97,101)(98,104)(100,102)(105,111)(107,109)(108,112)(113,117)(114,120)(116,118)>;

G:=Group( (1,58,31,56,88)(2,59,32,49,81)(3,60,25,50,82)(4,61,26,51,83)(5,62,27,52,84)(6,63,28,53,85)(7,64,29,54,86)(8,57,30,55,87)(9,46,110,18,40)(10,47,111,19,33)(11,48,112,20,34)(12,41,105,21,35)(13,42,106,22,36)(14,43,107,23,37)(15,44,108,24,38)(16,45,109,17,39)(65,94,115,78,99)(66,95,116,79,100)(67,96,117,80,101)(68,89,118,73,102)(69,90,119,74,103)(70,91,120,75,104)(71,92,113,76,97)(72,93,114,77,98), (1,22,103)(2,23,104)(3,24,97)(4,17,98)(5,18,99)(6,19,100)(7,20,101)(8,21,102)(9,94,27)(10,95,28)(11,96,29)(12,89,30)(13,90,31)(14,91,32)(15,92,25)(16,93,26)(33,66,63)(34,67,64)(35,68,57)(36,69,58)(37,70,59)(38,71,60)(39,72,61)(40,65,62)(41,118,55)(42,119,56)(43,120,49)(44,113,50)(45,114,51)(46,115,52)(47,116,53)(48,117,54)(73,87,105)(74,88,106)(75,81,107)(76,82,108)(77,83,109)(78,84,110)(79,85,111)(80,86,112), (9,94)(10,95)(11,96)(12,89)(13,90)(14,91)(15,92)(16,93)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,97)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,65)(41,118)(42,119)(43,120)(44,113)(45,114)(46,115)(47,116)(48,117)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,29)(26,32)(28,30)(33,35)(34,38)(37,39)(41,47)(43,45)(44,48)(49,51)(50,54)(53,55)(57,63)(59,61)(60,64)(66,68)(67,71)(70,72)(73,79)(75,77)(76,80)(81,83)(82,86)(85,87)(89,95)(91,93)(92,96)(97,101)(98,104)(100,102)(105,111)(107,109)(108,112)(113,117)(114,120)(116,118) );

G=PermutationGroup([[(1,58,31,56,88),(2,59,32,49,81),(3,60,25,50,82),(4,61,26,51,83),(5,62,27,52,84),(6,63,28,53,85),(7,64,29,54,86),(8,57,30,55,87),(9,46,110,18,40),(10,47,111,19,33),(11,48,112,20,34),(12,41,105,21,35),(13,42,106,22,36),(14,43,107,23,37),(15,44,108,24,38),(16,45,109,17,39),(65,94,115,78,99),(66,95,116,79,100),(67,96,117,80,101),(68,89,118,73,102),(69,90,119,74,103),(70,91,120,75,104),(71,92,113,76,97),(72,93,114,77,98)], [(1,22,103),(2,23,104),(3,24,97),(4,17,98),(5,18,99),(6,19,100),(7,20,101),(8,21,102),(9,94,27),(10,95,28),(11,96,29),(12,89,30),(13,90,31),(14,91,32),(15,92,25),(16,93,26),(33,66,63),(34,67,64),(35,68,57),(36,69,58),(37,70,59),(38,71,60),(39,72,61),(40,65,62),(41,118,55),(42,119,56),(43,120,49),(44,113,50),(45,114,51),(46,115,52),(47,116,53),(48,117,54),(73,87,105),(74,88,106),(75,81,107),(76,82,108),(77,83,109),(78,84,110),(79,85,111),(80,86,112)], [(9,94),(10,95),(11,96),(12,89),(13,90),(14,91),(15,92),(16,93),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,97),(33,66),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,65),(41,118),(42,119),(43,120),(44,113),(45,114),(46,115),(47,116),(48,117),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(17,23),(19,21),(20,24),(25,29),(26,32),(28,30),(33,35),(34,38),(37,39),(41,47),(43,45),(44,48),(49,51),(50,54),(53,55),(57,63),(59,61),(60,64),(66,68),(67,71),(70,72),(73,79),(75,77),(76,80),(81,83),(82,86),(85,87),(89,95),(91,93),(92,96),(97,101),(98,104),(100,102),(105,111),(107,109),(108,112),(113,117),(114,120),(116,118)]])

105 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B5C5D6A6B8A8B8C8D10A10B10C10D10E···10L10M10N10O10P10Q10R10S10T12A12B15A15B15C15D20A20B20C20D20E20F20G20H20I20J20K20L20M20N20O20P24A24B30A30B30C30D30E30F30G30H40A···40H40I···40P60A60B60C60D60E60F60G60H120A···120H
order1222223444455556688881010101010···101010101010101010121215151515202020202020202020202020202020202424303030303030303040···4040···406060606060606060120···120
size1133412224612111128226611113···34444121212124822222222444466661212121244222288882···26···6444488884···4

105 irreducible representations

dim1111111111111111222222222222224444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10S3D4D4D6D6D6SD16C5×S3C5×D4C5×D4S3×C10S3×C10S3×C10C5×SD16S3×D4S3×SD16C5×S3×D4C5×S3×SD16
kernelC5×S3×SD16S3×C40C5×C24⋊C2C5×D4.S3C5×Q82S3C15×SD16C5×S3×D4C5×S3×Q8S3×SD16S3×C8C24⋊C2D4.S3Q82S3C3×SD16S3×D4S3×Q8C5×SD16C5×Dic3S3×C10C40C5×D4C5×Q8C5×S3SD16Dic3D6C8D4Q8S3C10C5C2C1
# reps11111111444444441111114444444161248

Matrix representation of C5×S3×SD16 in GL4(𝔽241) generated by

205000
020500
002050
000205
,
24024000
1000
0010
0001
,
1000
24024000
0010
0001
,
240000
024000
0022219
00222222
,
1000
0100
0001
0010
G:=sub<GL(4,GF(241))| [205,0,0,0,0,205,0,0,0,0,205,0,0,0,0,205],[240,1,0,0,240,0,0,0,0,0,1,0,0,0,0,1],[1,240,0,0,0,240,0,0,0,0,1,0,0,0,0,1],[240,0,0,0,0,240,0,0,0,0,222,222,0,0,19,222],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;

C5×S3×SD16 in GAP, Magma, Sage, TeX

C_5\times S_3\times {\rm SD}_{16}
% in TeX

G:=Group("C5xS3xSD16");
// GroupNames label

G:=SmallGroup(480,792);
// by ID

G=gap.SmallGroup(480,792);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-3,471,436,2111,1068,102,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^3=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽