Copied to
clipboard

G = Dic6⋊D10order 480 = 25·3·5

5th semidirect product of Dic6 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D205D6, Dic65D10, D30.39D4, C60.22C23, D60.6C22, Dic15.13D4, C3⋊C89D10, D4⋊D56S3, C52C89D6, (D4×D15)⋊2C2, C3⋊D404C2, C54(D8⋊S3), D4.S36D5, C6.72(D4×D5), C33(D40⋊C2), D4.16(S3×D5), (C5×D4).10D6, C10.73(S3×D4), D20⋊S32C2, C1520(C8⋊C22), (C3×D4).10D10, C30.184(C2×D4), Dic6⋊D54C2, (C3×D20)⋊5C22, D30.5C43C2, C20.22(C22×S3), (C5×Dic6)⋊5C22, (C4×D15).6C22, C12.22(C22×D5), (D4×C15).16C22, C2.25(D10⋊D6), C4.22(C2×S3×D5), (C3×D4⋊D5)⋊8C2, (C5×C3⋊C8)⋊9C22, (C5×D4.S3)⋊8C2, (C3×C52C8)⋊9C22, SmallGroup(480,574)

Series: Derived Chief Lower central Upper central

C1C60 — Dic6⋊D10
C1C5C15C30C60C3×D20D20⋊S3 — Dic6⋊D10
C15C30C60 — Dic6⋊D10
C1C2C4D4

Generators and relations for Dic6⋊D10
 G = < a,b,c,d | a12=c10=d2=1, b2=a6, bab-1=dad=a-1, cac-1=a7, cbc-1=a3b, dbd=a9b, dcd=c-1 >

Subgroups: 1004 in 136 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, D4, Q8, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C3×D4, C22×S3, C3×D5, D15, C30, C30, C8⋊C22, C52C8, C40, C4×D5, D20, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C8⋊S3, C24⋊C2, D4⋊S3, D4.S3, C3×D8, S3×D4, D42S3, C5×Dic3, Dic15, C60, C6×D5, D30, D30, C2×C30, C8⋊D5, D40, D4⋊D5, Q8⋊D5, C5×SD16, D4×D5, Q82D5, D8⋊S3, C5×C3⋊C8, C3×C52C8, D5×Dic3, C3⋊D20, C3×D20, C5×Dic6, C4×D15, D60, C157D4, D4×C15, C22×D15, D40⋊C2, D30.5C4, C3⋊D40, Dic6⋊D5, C3×D4⋊D5, C5×D4.S3, D20⋊S3, D4×D15, Dic6⋊D10
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C8⋊C22, C22×D5, S3×D4, S3×D5, D4×D5, D8⋊S3, C2×S3×D5, D40⋊C2, D10⋊D6, Dic6⋊D10

Smallest permutation representation of Dic6⋊D10
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 85 7 91)(2 96 8 90)(3 95 9 89)(4 94 10 88)(5 93 11 87)(6 92 12 86)(13 97 19 103)(14 108 20 102)(15 107 21 101)(16 106 22 100)(17 105 23 99)(18 104 24 98)(25 43 31 37)(26 42 32 48)(27 41 33 47)(28 40 34 46)(29 39 35 45)(30 38 36 44)(49 74 55 80)(50 73 56 79)(51 84 57 78)(52 83 58 77)(53 82 59 76)(54 81 60 75)(61 113 67 119)(62 112 68 118)(63 111 69 117)(64 110 70 116)(65 109 71 115)(66 120 72 114)
(1 83 63 42 14 4 80 66 39 17)(2 78 64 37 15 11 81 61 40 24)(3 73 65 44 16 6 82 68 41 19)(5 75 67 46 18 8 84 70 43 21)(7 77 69 48 20 10 74 72 45 23)(9 79 71 38 22 12 76 62 47 13)(25 104 87 57 113 31 98 93 51 119)(26 99 88 52 114)(27 106 89 59 115 33 100 95 53 109)(28 101 90 54 116)(29 108 91 49 117 35 102 85 55 111)(30 103 92 56 118)(32 105 94 58 120)(34 107 96 60 110)(36 97 86 50 112)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(25 59)(26 58)(27 57)(28 56)(29 55)(30 54)(31 53)(32 52)(33 51)(34 50)(35 49)(36 60)(37 73)(38 84)(39 83)(40 82)(41 81)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(61 68)(62 67)(63 66)(64 65)(69 72)(70 71)(85 108)(86 107)(87 106)(88 105)(89 104)(90 103)(91 102)(92 101)(93 100)(94 99)(95 98)(96 97)(109 113)(110 112)(114 120)(115 119)(116 118)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,85,7,91)(2,96,8,90)(3,95,9,89)(4,94,10,88)(5,93,11,87)(6,92,12,86)(13,97,19,103)(14,108,20,102)(15,107,21,101)(16,106,22,100)(17,105,23,99)(18,104,24,98)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44)(49,74,55,80)(50,73,56,79)(51,84,57,78)(52,83,58,77)(53,82,59,76)(54,81,60,75)(61,113,67,119)(62,112,68,118)(63,111,69,117)(64,110,70,116)(65,109,71,115)(66,120,72,114), (1,83,63,42,14,4,80,66,39,17)(2,78,64,37,15,11,81,61,40,24)(3,73,65,44,16,6,82,68,41,19)(5,75,67,46,18,8,84,70,43,21)(7,77,69,48,20,10,74,72,45,23)(9,79,71,38,22,12,76,62,47,13)(25,104,87,57,113,31,98,93,51,119)(26,99,88,52,114)(27,106,89,59,115,33,100,95,53,109)(28,101,90,54,116)(29,108,91,49,117,35,102,85,55,111)(30,103,92,56,118)(32,105,94,58,120)(34,107,96,60,110)(36,97,86,50,112), (1,17)(2,16)(3,15)(4,14)(5,13)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(25,59)(26,58)(27,57)(28,56)(29,55)(30,54)(31,53)(32,52)(33,51)(34,50)(35,49)(36,60)(37,73)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(61,68)(62,67)(63,66)(64,65)(69,72)(70,71)(85,108)(86,107)(87,106)(88,105)(89,104)(90,103)(91,102)(92,101)(93,100)(94,99)(95,98)(96,97)(109,113)(110,112)(114,120)(115,119)(116,118)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,85,7,91)(2,96,8,90)(3,95,9,89)(4,94,10,88)(5,93,11,87)(6,92,12,86)(13,97,19,103)(14,108,20,102)(15,107,21,101)(16,106,22,100)(17,105,23,99)(18,104,24,98)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44)(49,74,55,80)(50,73,56,79)(51,84,57,78)(52,83,58,77)(53,82,59,76)(54,81,60,75)(61,113,67,119)(62,112,68,118)(63,111,69,117)(64,110,70,116)(65,109,71,115)(66,120,72,114), (1,83,63,42,14,4,80,66,39,17)(2,78,64,37,15,11,81,61,40,24)(3,73,65,44,16,6,82,68,41,19)(5,75,67,46,18,8,84,70,43,21)(7,77,69,48,20,10,74,72,45,23)(9,79,71,38,22,12,76,62,47,13)(25,104,87,57,113,31,98,93,51,119)(26,99,88,52,114)(27,106,89,59,115,33,100,95,53,109)(28,101,90,54,116)(29,108,91,49,117,35,102,85,55,111)(30,103,92,56,118)(32,105,94,58,120)(34,107,96,60,110)(36,97,86,50,112), (1,17)(2,16)(3,15)(4,14)(5,13)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(25,59)(26,58)(27,57)(28,56)(29,55)(30,54)(31,53)(32,52)(33,51)(34,50)(35,49)(36,60)(37,73)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(61,68)(62,67)(63,66)(64,65)(69,72)(70,71)(85,108)(86,107)(87,106)(88,105)(89,104)(90,103)(91,102)(92,101)(93,100)(94,99)(95,98)(96,97)(109,113)(110,112)(114,120)(115,119)(116,118) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,85,7,91),(2,96,8,90),(3,95,9,89),(4,94,10,88),(5,93,11,87),(6,92,12,86),(13,97,19,103),(14,108,20,102),(15,107,21,101),(16,106,22,100),(17,105,23,99),(18,104,24,98),(25,43,31,37),(26,42,32,48),(27,41,33,47),(28,40,34,46),(29,39,35,45),(30,38,36,44),(49,74,55,80),(50,73,56,79),(51,84,57,78),(52,83,58,77),(53,82,59,76),(54,81,60,75),(61,113,67,119),(62,112,68,118),(63,111,69,117),(64,110,70,116),(65,109,71,115),(66,120,72,114)], [(1,83,63,42,14,4,80,66,39,17),(2,78,64,37,15,11,81,61,40,24),(3,73,65,44,16,6,82,68,41,19),(5,75,67,46,18,8,84,70,43,21),(7,77,69,48,20,10,74,72,45,23),(9,79,71,38,22,12,76,62,47,13),(25,104,87,57,113,31,98,93,51,119),(26,99,88,52,114),(27,106,89,59,115,33,100,95,53,109),(28,101,90,54,116),(29,108,91,49,117,35,102,85,55,111),(30,103,92,56,118),(32,105,94,58,120),(34,107,96,60,110),(36,97,86,50,112)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(25,59),(26,58),(27,57),(28,56),(29,55),(30,54),(31,53),(32,52),(33,51),(34,50),(35,49),(36,60),(37,73),(38,84),(39,83),(40,82),(41,81),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(61,68),(62,67),(63,66),(64,65),(69,72),(70,71),(85,108),(86,107),(87,106),(88,105),(89,104),(90,103),(91,102),(92,101),(93,100),(94,99),(95,98),(96,97),(109,113),(110,112),(114,120),(115,119),(116,118)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B6C8A8B10A10B10C10D 12 15A15B20A20B20C20D24A24B30A30B30C30D30E30F40A40B40C40D60A60B
order1222223444556668810101010121515202020202424303030303030404040406060
size1142030602212302228401220228844444242420204488881212121288

42 irreducible representations

dim111111112222222222444444448
type++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6D10D10D10C8⋊C22S3×D4S3×D5D4×D5D8⋊S3C2×S3×D5D40⋊C2D10⋊D6Dic6⋊D10
kernelDic6⋊D10D30.5C4C3⋊D40Dic6⋊D5C3×D4⋊D5C5×D4.S3D20⋊S3D4×D15D4⋊D5Dic15D30D4.S3C52C8D20C5×D4C3⋊C8Dic6C3×D4C15C10D4C6C5C4C3C2C1
# reps111111111112111222112222442

Matrix representation of Dic6⋊D10 in GL6(𝔽241)

100000
010000
000001
0000240240
00024000
001100
,
24000000
02400000
004794194147
004719419447
00194147194147
001944719447
,
1901900000
512400000
000010
000001
001000
000100
,
1901900000
240510000
000010
0000240240
001000
0024024000

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,240,1,0,0,0,240,0,0,0,0,1,240,0,0],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,47,47,194,194,0,0,94,194,147,47,0,0,194,194,194,194,0,0,147,47,147,47],[190,51,0,0,0,0,190,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[190,240,0,0,0,0,190,51,0,0,0,0,0,0,0,0,1,240,0,0,0,0,0,240,0,0,1,240,0,0,0,0,0,240,0,0] >;

Dic6⋊D10 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes D_{10}
% in TeX

G:=Group("Dic6:D10");
// GroupNames label

G:=SmallGroup(480,574);
// by ID

G=gap.SmallGroup(480,574);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,120,254,303,675,346,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^10=d^2=1,b^2=a^6,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^3*b,d*b*d=a^9*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽