Extensions 1→N→G→Q→1 with N=C5×D42S3 and Q=C2

Direct product G=N×Q with N=C5×D42S3 and Q=C2
dρLabelID
C10×D42S3240C10xD4:2S3480,1155

Semidirect products G=N:Q with N=C5×D42S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D42S3)⋊1C2 = D60.C22φ: C2/C1C2 ⊆ Out C5×D42S31208+(C5xD4:2S3):1C2480,556
(C5×D42S3)⋊2C2 = D20.24D6φ: C2/C1C2 ⊆ Out C5×D42S32408-(C5xD4:2S3):2C2480,569
(C5×D42S3)⋊3C2 = C60.19C23φ: C2/C1C2 ⊆ Out C5×D42S32408+(C5xD4:2S3):3C2480,571
(C5×D42S3)⋊4C2 = C15⋊2- 1+4φ: C2/C1C2 ⊆ Out C5×D42S32408-(C5xD4:2S3):4C2480,1096
(C5×D42S3)⋊5C2 = D5×D42S3φ: C2/C1C2 ⊆ Out C5×D42S31208-(C5xD4:2S3):5C2480,1098
(C5×D42S3)⋊6C2 = D30.C23φ: C2/C1C2 ⊆ Out C5×D42S31208+(C5xD4:2S3):6C2480,1100
(C5×D42S3)⋊7C2 = D2014D6φ: C2/C1C2 ⊆ Out C5×D42S31208+(C5xD4:2S3):7C2480,1102
(C5×D42S3)⋊8C2 = C5×D8⋊S3φ: C2/C1C2 ⊆ Out C5×D42S31204(C5xD4:2S3):8C2480,790
(C5×D42S3)⋊9C2 = C5×D83S3φ: C2/C1C2 ⊆ Out C5×D42S32404(C5xD4:2S3):9C2480,791
(C5×D42S3)⋊10C2 = C5×Q8.7D6φ: C2/C1C2 ⊆ Out C5×D42S32404(C5xD4:2S3):10C2480,795
(C5×D42S3)⋊11C2 = C5×D46D6φ: C2/C1C2 ⊆ Out C5×D42S31204(C5xD4:2S3):11C2480,1156
(C5×D42S3)⋊12C2 = C5×Q8○D12φ: C2/C1C2 ⊆ Out C5×D42S32404(C5xD4:2S3):12C2480,1162
(C5×D42S3)⋊13C2 = C5×S3×C4○D4φ: trivial image1204(C5xD4:2S3):13C2480,1160

Non-split extensions G=N.Q with N=C5×D42S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D42S3).1C2 = C60.10C23φ: C2/C1C2 ⊆ Out C5×D42S32408-(C5xD4:2S3).1C2480,562
(C5×D42S3).2C2 = C5×D4.D6φ: C2/C1C2 ⊆ Out C5×D42S32404(C5xD4:2S3).2C2480,794

׿
×
𝔽