Copied to
clipboard

G = C5×D46D6order 480 = 25·3·5

Direct product of C5 and D46D6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×D46D6, C30.90C24, C60.237C23, C15112+ 1+4, (C5×D4)⋊28D6, (C6×D4)⋊7C10, D46(S3×C10), (S3×D4)⋊4C10, (C2×C20)⋊22D6, C4○D125C10, D128(C2×C10), (D4×C30)⋊21C2, (D4×C10)⋊16S3, C233(S3×C10), (C22×C10)⋊5D6, D42S34C10, (C2×C60)⋊28C22, Dic68(C2×C10), C6.7(C23×C10), (S3×C20)⋊14C22, C31(C5×2+ 1+4), (C5×D12)⋊38C22, (D4×C15)⋊38C22, C10.75(S3×C23), D6.3(C22×C10), (S3×C10).38C23, C12.21(C22×C10), (C2×C30).258C23, C20.210(C22×S3), (C22×C30)⋊17C22, (C5×Dic6)⋊35C22, (C10×Dic3)⋊21C22, Dic3.4(C22×C10), (C5×Dic3).40C23, (C5×S3×D4)⋊11C2, (C2×C4)⋊3(S3×C10), (C2×D4)⋊7(C5×S3), C4.21(S3×C2×C10), (C4×S3)⋊1(C2×C10), (C2×C12)⋊3(C2×C10), (C3×D4)⋊7(C2×C10), C3⋊D43(C2×C10), C22.2(S3×C2×C10), C2.8(S3×C22×C10), (C5×C4○D12)⋊15C2, (C2×C3⋊D4)⋊11C10, (C10×C3⋊D4)⋊26C2, (S3×C2×C10)⋊15C22, (C22×C6)⋊5(C2×C10), (C5×D42S3)⋊11C2, (C22×S3)⋊3(C2×C10), (C2×Dic3)⋊4(C2×C10), (C5×C3⋊D4)⋊19C22, (C2×C6).2(C22×C10), (C2×C10).258(C22×S3), SmallGroup(480,1156)

Series: Derived Chief Lower central Upper central

C1C6 — C5×D46D6
C1C3C6C30S3×C10S3×C2×C10C5×S3×D4 — C5×D46D6
C3C6 — C5×D46D6
C1C10D4×C10

Generators and relations for C5×D46D6
 G = < a,b,c,d,e | a5=b4=c2=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=b-1, be=eb, dcd-1=ece=b2c, ede=d-1 >

Subgroups: 740 in 332 conjugacy classes, 170 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C15, C2×D4, C2×D4, C4○D4, C20, C20, C2×C10, C2×C10, C2×C10, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C5×S3, C30, C30, 2+ 1+4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×C10, C22×C10, C4○D12, S3×D4, D42S3, C2×C3⋊D4, C6×D4, C5×Dic3, C60, S3×C10, S3×C10, C2×C30, C2×C30, C2×C30, D4×C10, D4×C10, C5×C4○D4, D46D6, C5×Dic6, S3×C20, C5×D12, C10×Dic3, C5×C3⋊D4, C2×C60, D4×C15, S3×C2×C10, C22×C30, C5×2+ 1+4, C5×C4○D12, C5×S3×D4, C5×D42S3, C10×C3⋊D4, D4×C30, C5×D46D6
Quotients: C1, C2, C22, C5, S3, C23, C10, D6, C24, C2×C10, C22×S3, C5×S3, 2+ 1+4, C22×C10, S3×C23, S3×C10, C23×C10, D46D6, S3×C2×C10, C5×2+ 1+4, S3×C22×C10, C5×D46D6

Smallest permutation representation of C5×D46D6
On 120 points
Generators in S120
(1 25 20 14 8)(2 26 21 15 9)(3 27 19 13 7)(4 28 22 16 10)(5 29 23 17 11)(6 30 24 18 12)(31 56 50 44 38)(32 57 51 45 39)(33 55 49 43 37)(34 60 54 48 42)(35 58 52 46 40)(36 59 53 47 41)(61 89 83 77 71)(62 90 84 78 72)(63 85 79 73 67)(64 86 80 74 68)(65 87 81 75 69)(66 88 82 76 70)(91 115 109 103 99)(92 116 110 104 100)(93 117 111 105 101)(94 118 112 106 102)(95 119 113 107 97)(96 120 114 108 98)
(1 92 5 95)(2 96 6 93)(3 94 4 91)(7 102 10 99)(8 100 11 97)(9 98 12 101)(13 106 16 103)(14 104 17 107)(15 108 18 105)(19 112 22 109)(20 110 23 113)(21 114 24 111)(25 116 29 119)(26 120 30 117)(27 118 28 115)(31 62 36 65)(32 66 34 63)(33 64 35 61)(37 68 40 71)(38 72 41 69)(39 70 42 67)(43 74 46 77)(44 78 47 75)(45 76 48 73)(49 80 52 83)(50 84 53 81)(51 82 54 79)(55 86 58 89)(56 90 59 87)(57 88 60 85)
(1 61)(2 65)(3 63)(4 66)(5 64)(6 62)(7 67)(8 71)(9 69)(10 70)(11 68)(12 72)(13 73)(14 77)(15 75)(16 76)(17 74)(18 78)(19 79)(20 83)(21 81)(22 82)(23 80)(24 84)(25 89)(26 87)(27 85)(28 88)(29 86)(30 90)(31 93)(32 91)(33 95)(34 94)(35 92)(36 96)(37 97)(38 101)(39 99)(40 100)(41 98)(42 102)(43 107)(44 105)(45 103)(46 104)(47 108)(48 106)(49 113)(50 111)(51 109)(52 110)(53 114)(54 112)(55 119)(56 117)(57 115)(58 116)(59 120)(60 118)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 3)(4 5)(7 8)(10 11)(13 14)(16 17)(19 20)(22 23)(25 27)(28 29)(31 36)(32 35)(33 34)(37 42)(38 41)(39 40)(43 48)(44 47)(45 46)(49 54)(50 53)(51 52)(55 60)(56 59)(57 58)(61 66)(62 65)(63 64)(67 68)(69 72)(70 71)(73 74)(75 78)(76 77)(79 80)(81 84)(82 83)(85 86)(87 90)(88 89)(91 95)(92 94)(97 99)(100 102)(103 107)(104 106)(109 113)(110 112)(115 119)(116 118)

G:=sub<Sym(120)| (1,25,20,14,8)(2,26,21,15,9)(3,27,19,13,7)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,56,50,44,38)(32,57,51,45,39)(33,55,49,43,37)(34,60,54,48,42)(35,58,52,46,40)(36,59,53,47,41)(61,89,83,77,71)(62,90,84,78,72)(63,85,79,73,67)(64,86,80,74,68)(65,87,81,75,69)(66,88,82,76,70)(91,115,109,103,99)(92,116,110,104,100)(93,117,111,105,101)(94,118,112,106,102)(95,119,113,107,97)(96,120,114,108,98), (1,92,5,95)(2,96,6,93)(3,94,4,91)(7,102,10,99)(8,100,11,97)(9,98,12,101)(13,106,16,103)(14,104,17,107)(15,108,18,105)(19,112,22,109)(20,110,23,113)(21,114,24,111)(25,116,29,119)(26,120,30,117)(27,118,28,115)(31,62,36,65)(32,66,34,63)(33,64,35,61)(37,68,40,71)(38,72,41,69)(39,70,42,67)(43,74,46,77)(44,78,47,75)(45,76,48,73)(49,80,52,83)(50,84,53,81)(51,82,54,79)(55,86,58,89)(56,90,59,87)(57,88,60,85), (1,61)(2,65)(3,63)(4,66)(5,64)(6,62)(7,67)(8,71)(9,69)(10,70)(11,68)(12,72)(13,73)(14,77)(15,75)(16,76)(17,74)(18,78)(19,79)(20,83)(21,81)(22,82)(23,80)(24,84)(25,89)(26,87)(27,85)(28,88)(29,86)(30,90)(31,93)(32,91)(33,95)(34,94)(35,92)(36,96)(37,97)(38,101)(39,99)(40,100)(41,98)(42,102)(43,107)(44,105)(45,103)(46,104)(47,108)(48,106)(49,113)(50,111)(51,109)(52,110)(53,114)(54,112)(55,119)(56,117)(57,115)(58,116)(59,120)(60,118), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,3)(4,5)(7,8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,27)(28,29)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,48)(44,47)(45,46)(49,54)(50,53)(51,52)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,68)(69,72)(70,71)(73,74)(75,78)(76,77)(79,80)(81,84)(82,83)(85,86)(87,90)(88,89)(91,95)(92,94)(97,99)(100,102)(103,107)(104,106)(109,113)(110,112)(115,119)(116,118)>;

G:=Group( (1,25,20,14,8)(2,26,21,15,9)(3,27,19,13,7)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,56,50,44,38)(32,57,51,45,39)(33,55,49,43,37)(34,60,54,48,42)(35,58,52,46,40)(36,59,53,47,41)(61,89,83,77,71)(62,90,84,78,72)(63,85,79,73,67)(64,86,80,74,68)(65,87,81,75,69)(66,88,82,76,70)(91,115,109,103,99)(92,116,110,104,100)(93,117,111,105,101)(94,118,112,106,102)(95,119,113,107,97)(96,120,114,108,98), (1,92,5,95)(2,96,6,93)(3,94,4,91)(7,102,10,99)(8,100,11,97)(9,98,12,101)(13,106,16,103)(14,104,17,107)(15,108,18,105)(19,112,22,109)(20,110,23,113)(21,114,24,111)(25,116,29,119)(26,120,30,117)(27,118,28,115)(31,62,36,65)(32,66,34,63)(33,64,35,61)(37,68,40,71)(38,72,41,69)(39,70,42,67)(43,74,46,77)(44,78,47,75)(45,76,48,73)(49,80,52,83)(50,84,53,81)(51,82,54,79)(55,86,58,89)(56,90,59,87)(57,88,60,85), (1,61)(2,65)(3,63)(4,66)(5,64)(6,62)(7,67)(8,71)(9,69)(10,70)(11,68)(12,72)(13,73)(14,77)(15,75)(16,76)(17,74)(18,78)(19,79)(20,83)(21,81)(22,82)(23,80)(24,84)(25,89)(26,87)(27,85)(28,88)(29,86)(30,90)(31,93)(32,91)(33,95)(34,94)(35,92)(36,96)(37,97)(38,101)(39,99)(40,100)(41,98)(42,102)(43,107)(44,105)(45,103)(46,104)(47,108)(48,106)(49,113)(50,111)(51,109)(52,110)(53,114)(54,112)(55,119)(56,117)(57,115)(58,116)(59,120)(60,118), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,3)(4,5)(7,8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,27)(28,29)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,48)(44,47)(45,46)(49,54)(50,53)(51,52)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,68)(69,72)(70,71)(73,74)(75,78)(76,77)(79,80)(81,84)(82,83)(85,86)(87,90)(88,89)(91,95)(92,94)(97,99)(100,102)(103,107)(104,106)(109,113)(110,112)(115,119)(116,118) );

G=PermutationGroup([[(1,25,20,14,8),(2,26,21,15,9),(3,27,19,13,7),(4,28,22,16,10),(5,29,23,17,11),(6,30,24,18,12),(31,56,50,44,38),(32,57,51,45,39),(33,55,49,43,37),(34,60,54,48,42),(35,58,52,46,40),(36,59,53,47,41),(61,89,83,77,71),(62,90,84,78,72),(63,85,79,73,67),(64,86,80,74,68),(65,87,81,75,69),(66,88,82,76,70),(91,115,109,103,99),(92,116,110,104,100),(93,117,111,105,101),(94,118,112,106,102),(95,119,113,107,97),(96,120,114,108,98)], [(1,92,5,95),(2,96,6,93),(3,94,4,91),(7,102,10,99),(8,100,11,97),(9,98,12,101),(13,106,16,103),(14,104,17,107),(15,108,18,105),(19,112,22,109),(20,110,23,113),(21,114,24,111),(25,116,29,119),(26,120,30,117),(27,118,28,115),(31,62,36,65),(32,66,34,63),(33,64,35,61),(37,68,40,71),(38,72,41,69),(39,70,42,67),(43,74,46,77),(44,78,47,75),(45,76,48,73),(49,80,52,83),(50,84,53,81),(51,82,54,79),(55,86,58,89),(56,90,59,87),(57,88,60,85)], [(1,61),(2,65),(3,63),(4,66),(5,64),(6,62),(7,67),(8,71),(9,69),(10,70),(11,68),(12,72),(13,73),(14,77),(15,75),(16,76),(17,74),(18,78),(19,79),(20,83),(21,81),(22,82),(23,80),(24,84),(25,89),(26,87),(27,85),(28,88),(29,86),(30,90),(31,93),(32,91),(33,95),(34,94),(35,92),(36,96),(37,97),(38,101),(39,99),(40,100),(41,98),(42,102),(43,107),(44,105),(45,103),(46,104),(47,108),(48,106),(49,113),(50,111),(51,109),(52,110),(53,114),(54,112),(55,119),(56,117),(57,115),(58,116),(59,120),(60,118)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,3),(4,5),(7,8),(10,11),(13,14),(16,17),(19,20),(22,23),(25,27),(28,29),(31,36),(32,35),(33,34),(37,42),(38,41),(39,40),(43,48),(44,47),(45,46),(49,54),(50,53),(51,52),(55,60),(56,59),(57,58),(61,66),(62,65),(63,64),(67,68),(69,72),(70,71),(73,74),(75,78),(76,77),(79,80),(81,84),(82,83),(85,86),(87,90),(88,89),(91,95),(92,94),(97,99),(100,102),(103,107),(104,106),(109,113),(110,112),(115,119),(116,118)]])

135 conjugacy classes

class 1 2A2B···2F2G2H2I2J 3 4A4B4C4D4E4F5A5B5C5D6A6B6C6D6E6F6G10A10B10C10D10E···10X10Y···10AN12A12B15A15B15C15D20A···20H20I···20X30A···30L30M···30AB60A···60H
order122···222223444444555566666661010101010···1010···1012121515151520···2020···2030···3030···3060···60
size112···2666622266661111222444411112···26···64422222···26···62···24···44···4

135 irreducible representations

dim111111111111222222224444
type+++++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10S3D6D6D6C5×S3S3×C10S3×C10S3×C102+ 1+4D46D6C5×2+ 1+4C5×D46D6
kernelC5×D46D6C5×C4○D12C5×S3×D4C5×D42S3C10×C3⋊D4D4×C30D46D6C4○D12S3×D4D42S3C2×C3⋊D4C6×D4D4×C10C2×C20C5×D4C22×C10C2×D4C2×C4D4C23C15C5C3C1
# reps1244414816161641142441681248

Matrix representation of C5×D46D6 in GL4(𝔽61) generated by

58000
05800
00580
00058
,
52431836
1892543
5243918
1894352
,
10590
01059
00600
00060
,
0100
606000
01060
606011
,
0100
1000
01060
10600
G:=sub<GL(4,GF(61))| [58,0,0,0,0,58,0,0,0,0,58,0,0,0,0,58],[52,18,52,18,43,9,43,9,18,25,9,43,36,43,18,52],[1,0,0,0,0,1,0,0,59,0,60,0,0,59,0,60],[0,60,0,60,1,60,1,60,0,0,0,1,0,0,60,1],[0,1,0,1,1,0,1,0,0,0,0,60,0,0,60,0] >;

C5×D46D6 in GAP, Magma, Sage, TeX

C_5\times D_4\rtimes_6D_6
% in TeX

G:=Group("C5xD4:6D6");
// GroupNames label

G:=SmallGroup(480,1156);
// by ID

G=gap.SmallGroup(480,1156);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-3,891,2467,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽