Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C20

Direct product G=N×Q with N=C2×Dic3 and Q=C20
dρLabelID
Dic3×C2×C20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C2×Dic3 and Q=C20
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊C20 = C5×C23.6D6φ: C20/C5C4 ⊆ Out C2×Dic31204(C2xDic3):C20480,125
(C2×Dic3)⋊2C20 = C5×C6.C42φ: C20/C10C2 ⊆ Out C2×Dic3480(C2xDic3):2C20480,150
(C2×Dic3)⋊3C20 = C5×C23.16D6φ: C20/C10C2 ⊆ Out C2×Dic3240(C2xDic3):3C20480,756
(C2×Dic3)⋊4C20 = C10×Dic3⋊C4φ: C20/C10C2 ⊆ Out C2×Dic3480(C2xDic3):4C20480,802

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C20
extensionφ:Q→Out NdρLabelID
(C2×Dic3).C20 = C5×C12.47D4φ: C20/C5C4 ⊆ Out C2×Dic32404(C2xDic3).C20480,143
(C2×Dic3).2C20 = C5×Dic3⋊C8φ: C20/C10C2 ⊆ Out C2×Dic3480(C2xDic3).2C20480,133
(C2×Dic3).3C20 = C5×C24⋊C4φ: C20/C10C2 ⊆ Out C2×Dic3480(C2xDic3).3C20480,134
(C2×Dic3).4C20 = C5×D6⋊C8φ: C20/C10C2 ⊆ Out C2×Dic3240(C2xDic3).4C20480,139
(C2×Dic3).5C20 = C10×C8⋊S3φ: C20/C10C2 ⊆ Out C2×Dic3240(C2xDic3).5C20480,779
(C2×Dic3).6C20 = C5×S3×M4(2)φ: C20/C10C2 ⊆ Out C2×Dic31204(C2xDic3).6C20480,785
(C2×Dic3).7C20 = Dic3×C40φ: trivial image480(C2xDic3).7C20480,132
(C2×Dic3).8C20 = S3×C2×C40φ: trivial image240(C2xDic3).8C20480,778

׿
×
𝔽