Extensions 1→N→G→Q→1 with N=Dic20 and Q=S3

Direct product G=N×Q with N=Dic20 and Q=S3

Semidirect products G=N:Q with N=Dic20 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic201S3 = C24.D10φ: S3/C3C2 ⊆ Out Dic202404+Dic20:1S3480,19
Dic202S3 = Dic20⋊S3φ: S3/C3C2 ⊆ Out Dic202404Dic20:2S3480,339
Dic203S3 = C15⋊SD32φ: S3/C3C2 ⊆ Out Dic202404Dic20:3S3480,17
Dic204S3 = Dic10.D6φ: S3/C3C2 ⊆ Out Dic202404Dic20:4S3480,340
Dic205S3 = D245D5φ: S3/C3C2 ⊆ Out Dic202404Dic20:5S3480,355
Dic206S3 = D30.4D4φ: S3/C3C2 ⊆ Out Dic202404Dic20:6S3480,356
Dic207S3 = D1205C2φ: trivial image2404+Dic20:7S3480,351

Non-split extensions G=N.Q with N=Dic20 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic20.1S3 = C3⋊Dic40φ: S3/C3C2 ⊆ Out Dic204804-Dic20.1S3480,23
Dic20.2S3 = C15⋊Q32φ: S3/C3C2 ⊆ Out Dic204804Dic20.2S3480,22