Extensions 1→N→G→Q→1 with N=C6 and Q=He3⋊C3

Direct product G=N×Q with N=C6 and Q=He3⋊C3
dρLabelID
C6×He3⋊C3162C6xHe3:C3486,212


Non-split extensions G=N.Q with N=C6 and Q=He3⋊C3
extensionφ:Q→Aut NdρLabelID
C6.1(He3⋊C3) = C2×C32.24He3central extension (φ=1)162C6.1(He3:C3)486,63
C6.2(He3⋊C3) = C2×C32.27He3central extension (φ=1)162C6.2(He3:C3)486,66
C6.3(He3⋊C3) = C2×C32.29He3central extension (φ=1)162C6.3(He3:C3)486,68
C6.4(He3⋊C3) = C2×C32.20He3central extension (φ=1)162C6.4(He3:C3)486,75
C6.5(He3⋊C3) = C2×He3⋊C9central extension (φ=1)162C6.5(He3:C3)486,77
C6.6(He3⋊C3) = C2×C92⋊C3central extension (φ=1)543C6.6(He3:C3)486,85
C6.7(He3⋊C3) = C2×C922C3central extension (φ=1)543C6.7(He3:C3)486,86
C6.8(He3⋊C3) = C2×C92.C3central extension (φ=1)543C6.8(He3:C3)486,87
C6.9(He3⋊C3) = C2×C32.He3central extension (φ=1)549C6.9(He3:C3)486,88
C6.10(He3⋊C3) = C2×C32.5He3central extension (φ=1)549C6.10(He3:C3)486,89
C6.11(He3⋊C3) = C2×C32.6He3central extension (φ=1)549C6.11(He3:C3)486,90

׿
×
𝔽