Copied to
clipboard

G = C6×He3⋊C3order 486 = 2·35

Direct product of C6 and He3⋊C3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C6×He3⋊C3, (C6×He3)⋊4C3, He33(C3×C6), C6.9(C3×He3), C3.9(C6×He3), (C3×He3)⋊16C6, (C32×C18)⋊6C3, (C3×C18)⋊7C32, (C32×C9)⋊32C6, (C3×C6).3C33, (C3×C6).29He3, C33.44(C3×C6), (C2×He3)⋊2C32, C32.3(C32×C6), C32.27(C2×He3), (C32×C6).32C32, (C3×C9)⋊18(C3×C6), SmallGroup(486,212)

Series: Derived Chief Lower central Upper central

C1C32 — C6×He3⋊C3
C1C3C32C33C32×C9C3×He3⋊C3 — C6×He3⋊C3
C1C3C32 — C6×He3⋊C3
C1C3×C6C32×C6 — C6×He3⋊C3

Generators and relations for C6×He3⋊C3
 G = < a,b,c,d,e | a6=b3=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe-1=bc-1, cd=dc, ce=ec, ede-1=bcd >

Subgroups: 576 in 168 conjugacy classes, 72 normal (14 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, He3, He3, C33, C33, C3×C18, C3×C18, C2×He3, C2×He3, C32×C6, C32×C6, He3⋊C3, C32×C9, C3×He3, C2×He3⋊C3, C32×C18, C6×He3, C3×He3⋊C3, C6×He3⋊C3
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C33, C2×He3, C32×C6, He3⋊C3, C3×He3, C2×He3⋊C3, C6×He3, C3×He3⋊C3, C6×He3⋊C3

Smallest permutation representation of C6×He3⋊C3
On 162 points
Generators in S162
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)(145 146 147 148 149 150)(151 152 153 154 155 156)(157 158 159 160 161 162)
(1 22 46)(2 23 47)(3 24 48)(4 19 43)(5 20 44)(6 21 45)(7 49 86)(8 50 87)(9 51 88)(10 52 89)(11 53 90)(12 54 85)(13 93 136)(14 94 137)(15 95 138)(16 96 133)(17 91 134)(18 92 135)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 83 126)(38 84 121)(39 79 122)(40 80 123)(41 81 124)(42 82 125)(55 140 99)(56 141 100)(57 142 101)(58 143 102)(59 144 97)(60 139 98)(61 65 63)(62 66 64)(67 71 69)(68 72 70)(73 119 162)(74 120 157)(75 115 158)(76 116 159)(77 117 160)(78 118 161)(103 107 105)(104 108 106)(109 113 111)(110 114 112)(127 131 129)(128 132 130)(145 149 147)(146 150 148)(151 155 153)(152 156 154)
(1 44 24)(2 45 19)(3 46 20)(4 47 21)(5 48 22)(6 43 23)(7 51 90)(8 52 85)(9 53 86)(10 54 87)(11 49 88)(12 50 89)(13 134 95)(14 135 96)(15 136 91)(16 137 92)(17 138 93)(18 133 94)(25 149 62)(26 150 63)(27 145 64)(28 146 65)(29 147 66)(30 148 61)(31 104 71)(32 105 72)(33 106 67)(34 107 68)(35 108 69)(36 103 70)(37 79 124)(38 80 125)(39 81 126)(40 82 121)(41 83 122)(42 84 123)(55 97 142)(56 98 143)(57 99 144)(58 100 139)(59 101 140)(60 102 141)(73 115 160)(74 116 161)(75 117 162)(76 118 157)(77 119 158)(78 120 159)(109 130 154)(110 131 155)(111 132 156)(112 127 151)(113 128 152)(114 129 153)
(1 8 149)(2 9 150)(3 10 145)(4 11 146)(5 12 147)(6 7 148)(13 160 128)(14 161 129)(15 162 130)(16 157 131)(17 158 132)(18 159 127)(19 86 26)(20 87 27)(21 88 28)(22 89 29)(23 90 30)(24 85 25)(31 98 37)(32 99 38)(33 100 39)(34 101 40)(35 102 41)(36 97 42)(43 51 61)(44 52 62)(45 53 63)(46 54 64)(47 49 65)(48 50 66)(55 123 70)(56 124 71)(57 125 72)(58 126 67)(59 121 68)(60 122 69)(73 152 134)(74 153 135)(75 154 136)(76 155 137)(77 156 138)(78 151 133)(79 104 143)(80 105 144)(81 106 139)(82 107 140)(83 108 141)(84 103 142)(91 117 109)(92 118 110)(93 119 111)(94 120 112)(95 115 113)(96 116 114)
(1 79 127)(2 80 128)(3 81 129)(4 82 130)(5 83 131)(6 84 132)(7 105 136)(8 106 137)(9 107 138)(10 108 133)(11 103 134)(12 104 135)(13 88 36)(14 89 31)(15 90 32)(16 85 33)(17 86 34)(18 87 35)(19 38 113)(20 39 114)(21 40 109)(22 41 110)(23 42 111)(24 37 112)(25 141 161)(26 142 162)(27 143 157)(28 144 158)(29 139 159)(30 140 160)(43 123 156)(44 124 151)(45 125 152)(46 126 153)(47 121 154)(48 122 155)(49 70 95)(50 71 96)(51 72 91)(52 67 92)(53 68 93)(54 69 94)(55 75 150)(56 76 145)(57 77 146)(58 78 147)(59 73 148)(60 74 149)(61 101 115)(62 102 116)(63 97 117)(64 98 118)(65 99 119)(66 100 120)

G:=sub<Sym(162)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144)(145,146,147,148,149,150)(151,152,153,154,155,156)(157,158,159,160,161,162), (1,22,46)(2,23,47)(3,24,48)(4,19,43)(5,20,44)(6,21,45)(7,49,86)(8,50,87)(9,51,88)(10,52,89)(11,53,90)(12,54,85)(13,93,136)(14,94,137)(15,95,138)(16,96,133)(17,91,134)(18,92,135)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,83,126)(38,84,121)(39,79,122)(40,80,123)(41,81,124)(42,82,125)(55,140,99)(56,141,100)(57,142,101)(58,143,102)(59,144,97)(60,139,98)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,119,162)(74,120,157)(75,115,158)(76,116,159)(77,117,160)(78,118,161)(103,107,105)(104,108,106)(109,113,111)(110,114,112)(127,131,129)(128,132,130)(145,149,147)(146,150,148)(151,155,153)(152,156,154), (1,44,24)(2,45,19)(3,46,20)(4,47,21)(5,48,22)(6,43,23)(7,51,90)(8,52,85)(9,53,86)(10,54,87)(11,49,88)(12,50,89)(13,134,95)(14,135,96)(15,136,91)(16,137,92)(17,138,93)(18,133,94)(25,149,62)(26,150,63)(27,145,64)(28,146,65)(29,147,66)(30,148,61)(31,104,71)(32,105,72)(33,106,67)(34,107,68)(35,108,69)(36,103,70)(37,79,124)(38,80,125)(39,81,126)(40,82,121)(41,83,122)(42,84,123)(55,97,142)(56,98,143)(57,99,144)(58,100,139)(59,101,140)(60,102,141)(73,115,160)(74,116,161)(75,117,162)(76,118,157)(77,119,158)(78,120,159)(109,130,154)(110,131,155)(111,132,156)(112,127,151)(113,128,152)(114,129,153), (1,8,149)(2,9,150)(3,10,145)(4,11,146)(5,12,147)(6,7,148)(13,160,128)(14,161,129)(15,162,130)(16,157,131)(17,158,132)(18,159,127)(19,86,26)(20,87,27)(21,88,28)(22,89,29)(23,90,30)(24,85,25)(31,98,37)(32,99,38)(33,100,39)(34,101,40)(35,102,41)(36,97,42)(43,51,61)(44,52,62)(45,53,63)(46,54,64)(47,49,65)(48,50,66)(55,123,70)(56,124,71)(57,125,72)(58,126,67)(59,121,68)(60,122,69)(73,152,134)(74,153,135)(75,154,136)(76,155,137)(77,156,138)(78,151,133)(79,104,143)(80,105,144)(81,106,139)(82,107,140)(83,108,141)(84,103,142)(91,117,109)(92,118,110)(93,119,111)(94,120,112)(95,115,113)(96,116,114), (1,79,127)(2,80,128)(3,81,129)(4,82,130)(5,83,131)(6,84,132)(7,105,136)(8,106,137)(9,107,138)(10,108,133)(11,103,134)(12,104,135)(13,88,36)(14,89,31)(15,90,32)(16,85,33)(17,86,34)(18,87,35)(19,38,113)(20,39,114)(21,40,109)(22,41,110)(23,42,111)(24,37,112)(25,141,161)(26,142,162)(27,143,157)(28,144,158)(29,139,159)(30,140,160)(43,123,156)(44,124,151)(45,125,152)(46,126,153)(47,121,154)(48,122,155)(49,70,95)(50,71,96)(51,72,91)(52,67,92)(53,68,93)(54,69,94)(55,75,150)(56,76,145)(57,77,146)(58,78,147)(59,73,148)(60,74,149)(61,101,115)(62,102,116)(63,97,117)(64,98,118)(65,99,119)(66,100,120)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144)(145,146,147,148,149,150)(151,152,153,154,155,156)(157,158,159,160,161,162), (1,22,46)(2,23,47)(3,24,48)(4,19,43)(5,20,44)(6,21,45)(7,49,86)(8,50,87)(9,51,88)(10,52,89)(11,53,90)(12,54,85)(13,93,136)(14,94,137)(15,95,138)(16,96,133)(17,91,134)(18,92,135)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,83,126)(38,84,121)(39,79,122)(40,80,123)(41,81,124)(42,82,125)(55,140,99)(56,141,100)(57,142,101)(58,143,102)(59,144,97)(60,139,98)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,119,162)(74,120,157)(75,115,158)(76,116,159)(77,117,160)(78,118,161)(103,107,105)(104,108,106)(109,113,111)(110,114,112)(127,131,129)(128,132,130)(145,149,147)(146,150,148)(151,155,153)(152,156,154), (1,44,24)(2,45,19)(3,46,20)(4,47,21)(5,48,22)(6,43,23)(7,51,90)(8,52,85)(9,53,86)(10,54,87)(11,49,88)(12,50,89)(13,134,95)(14,135,96)(15,136,91)(16,137,92)(17,138,93)(18,133,94)(25,149,62)(26,150,63)(27,145,64)(28,146,65)(29,147,66)(30,148,61)(31,104,71)(32,105,72)(33,106,67)(34,107,68)(35,108,69)(36,103,70)(37,79,124)(38,80,125)(39,81,126)(40,82,121)(41,83,122)(42,84,123)(55,97,142)(56,98,143)(57,99,144)(58,100,139)(59,101,140)(60,102,141)(73,115,160)(74,116,161)(75,117,162)(76,118,157)(77,119,158)(78,120,159)(109,130,154)(110,131,155)(111,132,156)(112,127,151)(113,128,152)(114,129,153), (1,8,149)(2,9,150)(3,10,145)(4,11,146)(5,12,147)(6,7,148)(13,160,128)(14,161,129)(15,162,130)(16,157,131)(17,158,132)(18,159,127)(19,86,26)(20,87,27)(21,88,28)(22,89,29)(23,90,30)(24,85,25)(31,98,37)(32,99,38)(33,100,39)(34,101,40)(35,102,41)(36,97,42)(43,51,61)(44,52,62)(45,53,63)(46,54,64)(47,49,65)(48,50,66)(55,123,70)(56,124,71)(57,125,72)(58,126,67)(59,121,68)(60,122,69)(73,152,134)(74,153,135)(75,154,136)(76,155,137)(77,156,138)(78,151,133)(79,104,143)(80,105,144)(81,106,139)(82,107,140)(83,108,141)(84,103,142)(91,117,109)(92,118,110)(93,119,111)(94,120,112)(95,115,113)(96,116,114), (1,79,127)(2,80,128)(3,81,129)(4,82,130)(5,83,131)(6,84,132)(7,105,136)(8,106,137)(9,107,138)(10,108,133)(11,103,134)(12,104,135)(13,88,36)(14,89,31)(15,90,32)(16,85,33)(17,86,34)(18,87,35)(19,38,113)(20,39,114)(21,40,109)(22,41,110)(23,42,111)(24,37,112)(25,141,161)(26,142,162)(27,143,157)(28,144,158)(29,139,159)(30,140,160)(43,123,156)(44,124,151)(45,125,152)(46,126,153)(47,121,154)(48,122,155)(49,70,95)(50,71,96)(51,72,91)(52,67,92)(53,68,93)(54,69,94)(55,75,150)(56,76,145)(57,77,146)(58,78,147)(59,73,148)(60,74,149)(61,101,115)(62,102,116)(63,97,117)(64,98,118)(65,99,119)(66,100,120) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144),(145,146,147,148,149,150),(151,152,153,154,155,156),(157,158,159,160,161,162)], [(1,22,46),(2,23,47),(3,24,48),(4,19,43),(5,20,44),(6,21,45),(7,49,86),(8,50,87),(9,51,88),(10,52,89),(11,53,90),(12,54,85),(13,93,136),(14,94,137),(15,95,138),(16,96,133),(17,91,134),(18,92,135),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,83,126),(38,84,121),(39,79,122),(40,80,123),(41,81,124),(42,82,125),(55,140,99),(56,141,100),(57,142,101),(58,143,102),(59,144,97),(60,139,98),(61,65,63),(62,66,64),(67,71,69),(68,72,70),(73,119,162),(74,120,157),(75,115,158),(76,116,159),(77,117,160),(78,118,161),(103,107,105),(104,108,106),(109,113,111),(110,114,112),(127,131,129),(128,132,130),(145,149,147),(146,150,148),(151,155,153),(152,156,154)], [(1,44,24),(2,45,19),(3,46,20),(4,47,21),(5,48,22),(6,43,23),(7,51,90),(8,52,85),(9,53,86),(10,54,87),(11,49,88),(12,50,89),(13,134,95),(14,135,96),(15,136,91),(16,137,92),(17,138,93),(18,133,94),(25,149,62),(26,150,63),(27,145,64),(28,146,65),(29,147,66),(30,148,61),(31,104,71),(32,105,72),(33,106,67),(34,107,68),(35,108,69),(36,103,70),(37,79,124),(38,80,125),(39,81,126),(40,82,121),(41,83,122),(42,84,123),(55,97,142),(56,98,143),(57,99,144),(58,100,139),(59,101,140),(60,102,141),(73,115,160),(74,116,161),(75,117,162),(76,118,157),(77,119,158),(78,120,159),(109,130,154),(110,131,155),(111,132,156),(112,127,151),(113,128,152),(114,129,153)], [(1,8,149),(2,9,150),(3,10,145),(4,11,146),(5,12,147),(6,7,148),(13,160,128),(14,161,129),(15,162,130),(16,157,131),(17,158,132),(18,159,127),(19,86,26),(20,87,27),(21,88,28),(22,89,29),(23,90,30),(24,85,25),(31,98,37),(32,99,38),(33,100,39),(34,101,40),(35,102,41),(36,97,42),(43,51,61),(44,52,62),(45,53,63),(46,54,64),(47,49,65),(48,50,66),(55,123,70),(56,124,71),(57,125,72),(58,126,67),(59,121,68),(60,122,69),(73,152,134),(74,153,135),(75,154,136),(76,155,137),(77,156,138),(78,151,133),(79,104,143),(80,105,144),(81,106,139),(82,107,140),(83,108,141),(84,103,142),(91,117,109),(92,118,110),(93,119,111),(94,120,112),(95,115,113),(96,116,114)], [(1,79,127),(2,80,128),(3,81,129),(4,82,130),(5,83,131),(6,84,132),(7,105,136),(8,106,137),(9,107,138),(10,108,133),(11,103,134),(12,104,135),(13,88,36),(14,89,31),(15,90,32),(16,85,33),(17,86,34),(18,87,35),(19,38,113),(20,39,114),(21,40,109),(22,41,110),(23,42,111),(24,37,112),(25,141,161),(26,142,162),(27,143,157),(28,144,158),(29,139,159),(30,140,160),(43,123,156),(44,124,151),(45,125,152),(46,126,153),(47,121,154),(48,122,155),(49,70,95),(50,71,96),(51,72,91),(52,67,92),(53,68,93),(54,69,94),(55,75,150),(56,76,145),(57,77,146),(58,78,147),(59,73,148),(60,74,149),(61,101,115),(62,102,116),(63,97,117),(64,98,118),(65,99,119),(66,100,120)]])

102 conjugacy classes

class 1  2 3A···3H3I···3N3O···3AF6A···6H6I···6N6O···6AF9A···9R18A···18R
order123···33···33···36···66···66···69···918···18
size111···13···39···91···13···39···93···33···3

102 irreducible representations

dim111111113333
type++
imageC1C2C3C3C3C6C6C6He3C2×He3He3⋊C3C2×He3⋊C3
kernelC6×He3⋊C3C3×He3⋊C3C2×He3⋊C3C32×C18C6×He3He3⋊C3C32×C9C3×He3C3×C6C32C6C3
# reps1118261826661818

Matrix representation of C6×He3⋊C3 in GL4(𝔽19) generated by

11000
0800
0080
0008
,
1000
0100
00110
0007
,
1000
01100
00110
00011
,
7000
0040
0004
0600
,
7000
00160
00016
01700
G:=sub<GL(4,GF(19))| [11,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,1,0,0,0,0,11,0,0,0,0,7],[1,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[7,0,0,0,0,0,0,6,0,4,0,0,0,0,4,0],[7,0,0,0,0,0,0,17,0,16,0,0,0,0,16,0] >;

C6×He3⋊C3 in GAP, Magma, Sage, TeX

C_6\times {\rm He}_3\rtimes C_3
% in TeX

G:=Group("C6xHe3:C3");
// GroupNames label

G:=SmallGroup(486,212);
// by ID

G=gap.SmallGroup(486,212);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,986,3250]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^3=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e^-1=b*c^-1,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d>;
// generators/relations

׿
×
𝔽