# Extensions 1→N→G→Q→1 with N=C6 and Q=C3×3- 1+2

Direct product G=N×Q with N=C6 and Q=C3×3- 1+2
dρLabelID
C3×C6×3- 1+2162C3xC6xES-(3,1)486,252

Non-split extensions G=N.Q with N=C6 and Q=C3×3- 1+2
extensionφ:Q→Aut NdρLabelID
C6.1(C3×3- 1+2) = C6×C32⋊C9central extension (φ=1)162C6.1(C3xES-(3,1))486,191
C6.2(C3×3- 1+2) = C6×C9⋊C9central extension (φ=1)486C6.2(C3xES-(3,1))486,192
C6.3(C3×3- 1+2) = C18×3- 1+2central extension (φ=1)162C6.3(C3xES-(3,1))486,195
C6.4(C3×3- 1+2) = C2×C34.C3central extension (φ=1)54C6.4(C3xES-(3,1))486,197
C6.5(C3×3- 1+2) = C2×C9⋊He3central extension (φ=1)162C6.5(C3xES-(3,1))486,198
C6.6(C3×3- 1+2) = C2×C9⋊3- 1+2central extension (φ=1)162C6.6(C3xES-(3,1))486,200
C6.7(C3×3- 1+2) = C2×C33.31C32central extension (φ=1)162C6.7(C3xES-(3,1))486,201
C6.8(C3×3- 1+2) = C2×C927C3central extension (φ=1)162C6.8(C3xES-(3,1))486,202
C6.9(C3×3- 1+2) = C2×C928C3central extension (φ=1)162C6.9(C3xES-(3,1))486,205
C6.10(C3×3- 1+2) = C2×C929C3central extension (φ=1)162C6.10(C3xES-(3,1))486,206

׿
×
𝔽