Extensions 1→N→G→Q→1 with N=C3 and Q=He3.2S3

Direct product G=N×Q with N=C3 and Q=He3.2S3
dρLabelID
C3×He3.2S3546C3xHe3.2S3486,122

Semidirect products G=N:Q with N=C3 and Q=He3.2S3
extensionφ:Q→Aut NdρLabelID
C3⋊(He3.2S3) = He3⋊C33S3φ: He3.2S3/He3⋊C3C2 ⊆ Aut C381C3:(He3.2S3)486,173

Non-split extensions G=N.Q with N=C3 and Q=He3.2S3
extensionφ:Q→Aut NdρLabelID
C3.1(He3.2S3) = He3⋊D9φ: He3.2S3/He3⋊C3C2 ⊆ Aut C381C3.1(He3.2S3)486,25
C3.2(He3.2S3) = C92⋊C6φ: He3.2S3/He3⋊C3C2 ⊆ Aut C3276+C3.2(He3.2S3)486,35
C3.3(He3.2S3) = C922C6φ: He3.2S3/He3⋊C3C2 ⊆ Aut C3276+C3.3(He3.2S3)486,37
C3.4(He3.2S3) = C9⋊S33C9central extension (φ=1)546C3.4(He3.2S3)486,22
C3.5(He3.2S3) = C32⋊C9.S3central stem extension (φ=1)186C3.5(He3.2S3)486,5
C3.6(He3.2S3) = C3.3C3≀S3central stem extension (φ=1)546C3.6(He3.2S3)486,8
C3.7(He3.2S3) = C33.(C3×S3)central stem extension (φ=1)546C3.7(He3.2S3)486,11

׿
×
𝔽