non-abelian, supersoluble, monomial
Aliases: C3.3C3≀S3, C32⋊C9⋊2C6, (C3×He3).2S3, C33.5(C3×S3), C32⋊2D9⋊3C3, C32.27He3⋊2C2, C32.29(C32⋊C6), C3.6(He3.2S3), SmallGroup(486,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32⋊C9 — C3.3C3≀S3 |
C32⋊C9 — C3.3C3≀S3 |
Generators and relations for C3.3C3≀S3
G = < a,b,c,d,e | a3=b3=c3=e6=1, d3=eae-1=a-1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, ebe-1=a-1b-1c, cd=dc, ce=ec, ede-1=a-1b-1d2 >
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(1 7 4)(3 6 9)(10 16 13)(12 15 18)(20 23 26)(21 27 24)(29 35 32)(30 33 36)(37 40 43)(39 45 42)(46 52 49)(47 50 53)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 46 17 31 26 37)(2 48 15 30 24 39)(3 53 16 29 19 38)(4 52 11 28 20 43)(5 54 18 36 27 45)(6 50 10 35 22 44)(7 49 14 34 23 40)(8 51 12 33 21 42)(9 47 13 32 25 41)
G:=sub<Sym(54)| (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,7,4)(3,6,9)(10,16,13)(12,15,18)(20,23,26)(21,27,24)(29,35,32)(30,33,36)(37,40,43)(39,45,42)(46,52,49)(47,50,53), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,46,17,31,26,37)(2,48,15,30,24,39)(3,53,16,29,19,38)(4,52,11,28,20,43)(5,54,18,36,27,45)(6,50,10,35,22,44)(7,49,14,34,23,40)(8,51,12,33,21,42)(9,47,13,32,25,41)>;
G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,7,4)(3,6,9)(10,16,13)(12,15,18)(20,23,26)(21,27,24)(29,35,32)(30,33,36)(37,40,43)(39,45,42)(46,52,49)(47,50,53), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,46,17,31,26,37)(2,48,15,30,24,39)(3,53,16,29,19,38)(4,52,11,28,20,43)(5,54,18,36,27,45)(6,50,10,35,22,44)(7,49,14,34,23,40)(8,51,12,33,21,42)(9,47,13,32,25,41) );
G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(1,7,4),(3,6,9),(10,16,13),(12,15,18),(20,23,26),(21,27,24),(29,35,32),(30,33,36),(37,40,43),(39,45,42),(46,52,49),(47,50,53)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,46,17,31,26,37),(2,48,15,30,24,39),(3,53,16,29,19,38),(4,52,11,28,20,43),(5,54,18,36,27,45),(6,50,10,35,22,44),(7,49,14,34,23,40),(8,51,12,33,21,42),(9,47,13,32,25,41)]])
31 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3K | 3L | 6A | ··· | 6H | 9A | ··· | 9I |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 9 | ··· | 9 | 18 | 27 | ··· | 27 | 18 | ··· | 18 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 6 | 6 | 6 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 | C3≀S3 | C32⋊C6 | He3.2S3 | C3.3C3≀S3 |
kernel | C3.3C3≀S3 | C32.27He3 | C32⋊2D9 | C32⋊C9 | C3×He3 | C33 | C3 | C32 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 12 | 1 | 3 | 6 |
Matrix representation of C3.3C3≀S3 ►in GL6(𝔽19)
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 17 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 17 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 17 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[0,0,1,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,1,0,0],[0,0,0,0,5,0,0,0,0,0,0,17,0,0,0,17,0,0,0,5,0,0,0,0,0,0,17,0,0,0,17,0,0,0,0,0] >;
C3.3C3≀S3 in GAP, Magma, Sage, TeX
C_3._3C_3\wr S_3
% in TeX
G:=Group("C3.3C3wrS3");
// GroupNames label
G:=SmallGroup(486,8);
// by ID
G=gap.SmallGroup(486,8);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,338,4755,873,735,3244]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^6=1,d^3=e*a*e^-1=a^-1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=a^-1*b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=a^-1*b^-1*d^2>;
// generators/relations
Export