Extensions 1→N→G→Q→1 with N=C3 and Q=C2xHe3.C3

Direct product G=NxQ with N=C3 and Q=C2xHe3.C3
dρLabelID
C6xHe3.C3162C6xHe3.C3486,211

Semidirect products G=N:Q with N=C3 and Q=C2xHe3.C3
extensionφ:Q→Aut NdρLabelID
C3:(C2xHe3.C3) = S3xHe3.C3φ: C2xHe3.C3/He3.C3C2 ⊆ Aut C3546C3:(C2xHe3.C3)486,120

Non-split extensions G=N.Q with N=C3 and Q=C2xHe3.C3
extensionφ:Q→Aut NdρLabelID
C3.1(C2xHe3.C3) = C2xC32.19He3central extension (φ=1)162C3.1(C2xHe3.C3)486,74
C3.2(C2xHe3.C3) = C2xHe3:C9central extension (φ=1)162C3.2(C2xHe3.C3)486,77
C3.3(C2xHe3.C3) = C2x3- 1+2:C9central extension (φ=1)162C3.3(C2xHe3.C3)486,78
C3.4(C2xHe3.C3) = C2xC33.C32central stem extension (φ=1)162C3.4(C2xHe3.C3)486,64
C3.5(C2xHe3.C3) = C2xC33.3C32central stem extension (φ=1)162C3.5(C2xHe3.C3)486,65
C3.6(C2xHe3.C3) = C2xC32.27He3central stem extension (φ=1)162C3.6(C2xHe3.C3)486,66
C3.7(C2xHe3.C3) = C2xC32.29He3central stem extension (φ=1)162C3.7(C2xHe3.C3)486,68
C3.8(C2xHe3.C3) = C2xC33.7C32central stem extension (φ=1)162C3.8(C2xHe3.C3)486,69

׿
x
:
Z
F
o
wr
Q
<