Extensions 1→N→G→Q→1 with N=C3 and Q=C2×He3.C3

Direct product G=N×Q with N=C3 and Q=C2×He3.C3
dρLabelID
C6×He3.C3162C6xHe3.C3486,211

Semidirect products G=N:Q with N=C3 and Q=C2×He3.C3
extensionφ:Q→Aut NdρLabelID
C3⋊(C2×He3.C3) = S3×He3.C3φ: C2×He3.C3/He3.C3C2 ⊆ Aut C3546C3:(C2xHe3.C3)486,120

Non-split extensions G=N.Q with N=C3 and Q=C2×He3.C3
extensionφ:Q→Aut NdρLabelID
C3.1(C2×He3.C3) = C2×C32.19He3central extension (φ=1)162C3.1(C2xHe3.C3)486,74
C3.2(C2×He3.C3) = C2×He3⋊C9central extension (φ=1)162C3.2(C2xHe3.C3)486,77
C3.3(C2×He3.C3) = C2×3- 1+2⋊C9central extension (φ=1)162C3.3(C2xHe3.C3)486,78
C3.4(C2×He3.C3) = C2×C33.C32central stem extension (φ=1)162C3.4(C2xHe3.C3)486,64
C3.5(C2×He3.C3) = C2×C33.3C32central stem extension (φ=1)162C3.5(C2xHe3.C3)486,65
C3.6(C2×He3.C3) = C2×C32.27He3central stem extension (φ=1)162C3.6(C2xHe3.C3)486,66
C3.7(C2×He3.C3) = C2×C32.29He3central stem extension (φ=1)162C3.7(C2xHe3.C3)486,68
C3.8(C2×He3.C3) = C2×C33.7C32central stem extension (φ=1)162C3.8(C2xHe3.C3)486,69

׿
×
𝔽