p-group, metabelian, nilpotent (class 3), monomial
Aliases: He3.C3, C3.3He3, C32.2C32, 3- 1+2⋊2C3, (C3×C9)⋊2C3, SmallGroup(81,8)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for He3.C3
G = < a,b,c,d | a3=b3=c3=1, d3=b, ab=ba, cac-1=ab-1, ad=da, bc=cb, bd=db, dcd-1=ab-1c >
Character table of He3.C3
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | |
size | 1 | 1 | 1 | 3 | 3 | 9 | 9 | 3 | 3 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ10 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3 |
ρ11 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3 |
ρ12 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ97+2ζ94 | ζ94+2ζ9 | ζ98+2ζ92 | 2ζ98+ζ95 | 2ζ97+ζ9 | 2ζ95+ζ92 | 0 | 0 | 0 | 0 | complex faithful |
ρ13 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ94+2ζ9 | 2ζ97+ζ9 | 2ζ95+ζ92 | ζ98+2ζ92 | ζ97+2ζ94 | 2ζ98+ζ95 | 0 | 0 | 0 | 0 | complex faithful |
ρ14 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 2ζ97+ζ9 | ζ97+2ζ94 | 2ζ98+ζ95 | 2ζ95+ζ92 | ζ94+2ζ9 | ζ98+2ζ92 | 0 | 0 | 0 | 0 | complex faithful |
ρ15 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 2ζ95+ζ92 | 2ζ98+ζ95 | 2ζ97+ζ9 | ζ94+2ζ9 | ζ98+2ζ92 | ζ97+2ζ94 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ98+2ζ92 | 2ζ95+ζ92 | ζ94+2ζ9 | ζ97+2ζ94 | 2ζ98+ζ95 | 2ζ97+ζ9 | 0 | 0 | 0 | 0 | complex faithful |
ρ17 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 2ζ98+ζ95 | ζ98+2ζ92 | ζ97+2ζ94 | 2ζ97+ζ9 | 2ζ95+ζ92 | ζ94+2ζ9 | 0 | 0 | 0 | 0 | complex faithful |
(1 20 13)(2 21 14)(3 22 15)(4 23 16)(5 24 17)(6 25 18)(7 26 10)(8 27 11)(9 19 12)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(2 21 17)(3 15 19)(5 24 11)(6 18 22)(8 27 14)(9 12 25)(10 16 13)(20 23 26)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,20,13)(2,21,14)(3,22,15)(4,23,16)(5,24,17)(6,25,18)(7,26,10)(8,27,11)(9,19,12), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (2,21,17)(3,15,19)(5,24,11)(6,18,22)(8,27,14)(9,12,25)(10,16,13)(20,23,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)>;
G:=Group( (1,20,13)(2,21,14)(3,22,15)(4,23,16)(5,24,17)(6,25,18)(7,26,10)(8,27,11)(9,19,12), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (2,21,17)(3,15,19)(5,24,11)(6,18,22)(8,27,14)(9,12,25)(10,16,13)(20,23,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,20,13),(2,21,14),(3,22,15),(4,23,16),(5,24,17),(6,25,18),(7,26,10),(8,27,11),(9,19,12)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(2,21,17),(3,15,19),(5,24,11),(6,18,22),(8,27,14),(9,12,25),(10,16,13),(20,23,26)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,20);
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(1 20 17)(2 27 18)(3 25 10)(4 23 11)(5 21 12)(6 19 13)(7 26 14)(8 24 15)(9 22 16)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,20,17)(2,27,18)(3,25,10)(4,23,11)(5,21,12)(6,19,13)(7,26,14)(8,24,15)(9,22,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)>;
G:=Group( (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,20,17)(2,27,18)(3,25,10)(4,23,11)(5,21,12)(6,19,13)(7,26,14)(8,24,15)(9,22,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(1,20,17),(2,27,18),(3,25,10),(4,23,11),(5,21,12),(6,19,13),(7,26,14),(8,24,15),(9,22,16)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,26);
He3.C3 is a maximal subgroup of
He3.C6 He3.S3 He3.3S3 C9.He3 He3.C32 C9.2He3 C62.13C32 He3.A4 3- 1+2⋊A4
He3.C3 is a maximal quotient of
C33.C32 C33.3C32 C32.27He3 C32.29He3 C33.7C32 C32.19He3 He3⋊C9 3- 1+2⋊C9 C62.13C32 He3.A4 3- 1+2⋊A4
Matrix representation of He3.C3 ►in GL3(𝔽19) generated by
11 | 6 | 0 |
0 | 8 | 1 |
0 | 12 | 0 |
7 | 0 | 0 |
0 | 7 | 0 |
0 | 0 | 7 |
1 | 0 | 0 |
12 | 11 | 0 |
7 | 0 | 7 |
9 | 13 | 15 |
0 | 4 | 0 |
0 | 0 | 4 |
G:=sub<GL(3,GF(19))| [11,0,0,6,8,12,0,1,0],[7,0,0,0,7,0,0,0,7],[1,12,7,0,11,0,0,0,7],[9,0,0,13,4,0,15,0,4] >;
He3.C3 in GAP, Magma, Sage, TeX
{\rm He}_3.C_3
% in TeX
G:=Group("He3.C3");
// GroupNames label
G:=SmallGroup(81,8);
// by ID
G=gap.SmallGroup(81,8);
# by ID
G:=PCGroup([4,-3,3,-3,-3,97,77,434]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^3=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*b^-1*c>;
// generators/relations
Export
Subgroup lattice of He3.C3 in TeX
Character table of He3.C3 in TeX