Extensions 1→N→G→Q→1 with N=C3 and Q=C2×He3⋊C3

Direct product G=N×Q with N=C3 and Q=C2×He3⋊C3
dρLabelID
C6×He3⋊C3162C6xHe3:C3486,212

Semidirect products G=N:Q with N=C3 and Q=C2×He3⋊C3
extensionφ:Q→Aut NdρLabelID
C3⋊(C2×He3⋊C3) = S3×He3⋊C3φ: C2×He3⋊C3/He3⋊C3C2 ⊆ Aut C3546C3:(C2xHe3:C3)486,123

Non-split extensions G=N.Q with N=C3 and Q=C2×He3⋊C3
extensionφ:Q→Aut NdρLabelID
C3.1(C2×He3⋊C3) = C2×C32.20He3central extension (φ=1)162C3.1(C2xHe3:C3)486,75
C3.2(C2×He3⋊C3) = C2×He3⋊C9central extension (φ=1)162C3.2(C2xHe3:C3)486,77
C3.3(C2×He3⋊C3) = C2×C32.24He3central stem extension (φ=1)162C3.3(C2xHe3:C3)486,63
C3.4(C2×He3⋊C3) = C2×C32.27He3central stem extension (φ=1)162C3.4(C2xHe3:C3)486,66
C3.5(C2×He3⋊C3) = C2×C32.29He3central stem extension (φ=1)162C3.5(C2xHe3:C3)486,68
C3.6(C2×He3⋊C3) = C2×C92⋊C3central stem extension (φ=1)543C3.6(C2xHe3:C3)486,85
C3.7(C2×He3⋊C3) = C2×C922C3central stem extension (φ=1)543C3.7(C2xHe3:C3)486,86
C3.8(C2×He3⋊C3) = C2×C92.C3central stem extension (φ=1)543C3.8(C2xHe3:C3)486,87
C3.9(C2×He3⋊C3) = C2×C32.He3central stem extension (φ=1)549C3.9(C2xHe3:C3)486,88
C3.10(C2×He3⋊C3) = C2×C32.5He3central stem extension (φ=1)549C3.10(C2xHe3:C3)486,89
C3.11(C2×He3⋊C3) = C2×C32.6He3central stem extension (φ=1)549C3.11(C2xHe3:C3)486,90

׿
×
𝔽