Extensions 1→N→G→Q→1 with N=C3 and Q=C2×C3.He3

Direct product G=N×Q with N=C3 and Q=C2×C3.He3
dρLabelID
C6×C3.He3162C6xC3.He3486,213

Semidirect products G=N:Q with N=C3 and Q=C2×C3.He3
extensionφ:Q→Aut NdρLabelID
C3⋊(C2×C3.He3) = S3×C3.He3φ: C2×C3.He3/C3.He3C2 ⊆ Aut C3546C3:(C2xC3.He3)486,124

Non-split extensions G=N.Q with N=C3 and Q=C2×C3.He3
extensionφ:Q→Aut NdρLabelID
C3.1(C2×C3.He3) = C2×C32.20He3central extension (φ=1)162C3.1(C2xC3.He3)486,75
C3.2(C2×C3.He3) = C2×3- 1+2⋊C9central extension (φ=1)162C3.2(C2xC3.He3)486,78
C3.3(C2×C3.He3) = C2×C33.3C32central stem extension (φ=1)162C3.3(C2xC3.He3)486,65
C3.4(C2×C3.He3) = C2×C32.28He3central stem extension (φ=1)162C3.4(C2xC3.He3)486,67
C3.5(C2×C3.He3) = C2×C32.29He3central stem extension (φ=1)162C3.5(C2xC3.He3)486,68

׿
×
𝔽