Copied to
clipboard

G = C2×C3.He3order 162 = 2·34

Direct product of C2 and C3.He3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×C3.He3, C6.5He3, 3- 1+2.C6, (C3×C9).3C6, (C3×C18).2C3, C3.5(C2×He3), (C3×C6).4C32, C32.4(C3×C6), (C2×3- 1+2).C3, SmallGroup(162,31)

Series: Derived Chief Lower central Upper central

C1C32 — C2×C3.He3
C1C3C32C3×C9C3.He3 — C2×C3.He3
C1C3C32 — C2×C3.He3
C1C6C3×C6 — C2×C3.He3

Generators and relations for C2×C3.He3
 G = < a,b,c,d,e | a2=b3=d3=1, c3=b-1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=bcd-1, ede-1=b-1d >

3C3
3C6
3C9
3C9
3C9
3C9
3C18
3C18
3C18
3C18

Smallest permutation representation of C2×C3.He3
On 54 points
Generators in S54
(1 32)(2 33)(3 34)(4 35)(5 36)(6 28)(7 29)(8 30)(9 31)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(37 43 40)(38 44 41)(39 45 42)(46 49 52)(47 50 53)(48 51 54)
(1 26 11 7 23 17 4 20 14)(2 21 12 8 27 18 5 24 15)(3 25 13 9 22 10 6 19 16)(28 46 43 34 52 40 31 49 37)(29 50 44 35 47 41 32 53 38)(30 54 45 36 51 42 33 48 39)

G:=sub<Sym(54)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54), (1,26,11,7,23,17,4,20,14)(2,21,12,8,27,18,5,24,15)(3,25,13,9,22,10,6,19,16)(28,46,43,34,52,40,31,49,37)(29,50,44,35,47,41,32,53,38)(30,54,45,36,51,42,33,48,39)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54), (1,26,11,7,23,17,4,20,14)(2,21,12,8,27,18,5,24,15)(3,25,13,9,22,10,6,19,16)(28,46,43,34,52,40,31,49,37)(29,50,44,35,47,41,32,53,38)(30,54,45,36,51,42,33,48,39) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,28),(7,29),(8,30),(9,31),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(37,43,40),(38,44,41),(39,45,42),(46,49,52),(47,50,53),(48,51,54)], [(1,26,11,7,23,17,4,20,14),(2,21,12,8,27,18,5,24,15),(3,25,13,9,22,10,6,19,16),(28,46,43,34,52,40,31,49,37),(29,50,44,35,47,41,32,53,38),(30,54,45,36,51,42,33,48,39)]])

C2×C3.He3 is a maximal subgroup of   3- 1+2.Dic3

34 conjugacy classes

class 1  2 3A3B3C3D6A6B6C6D9A···9F9G···9L18A···18F18G···18L
order12333366669···99···918···1818···18
size11113311333···39···93···39···9

34 irreducible representations

dim1111113333
type++
imageC1C2C3C3C6C6He3C2×He3C3.He3C2×C3.He3
kernelC2×C3.He3C3.He3C3×C18C2×3- 1+2C3×C93- 1+2C6C3C2C1
# reps1126262266

Matrix representation of C2×C3.He3 in GL4(𝔽19) generated by

18000
0100
0010
0001
,
1000
01100
00110
00011
,
1000
0600
0060
0609
,
1000
0100
01110
01207
,
1000
01100
00181
01180
G:=sub<GL(4,GF(19))| [18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[1,0,0,0,0,6,0,6,0,0,6,0,0,0,0,9],[1,0,0,0,0,1,1,12,0,0,11,0,0,0,0,7],[1,0,0,0,0,1,0,1,0,10,18,18,0,0,1,0] >;

C2×C3.He3 in GAP, Magma, Sage, TeX

C_2\times C_3.{\rm He}_3
% in TeX

G:=Group("C2xC3.He3");
// GroupNames label

G:=SmallGroup(162,31);
// by ID

G=gap.SmallGroup(162,31);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,276,187,282,728]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=d^3=1,c^3=b^-1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b*c*d^-1,e*d*e^-1=b^-1*d>;
// generators/relations

Export

Subgroup lattice of C2×C3.He3 in TeX

׿
×
𝔽