# Extensions 1→N→G→Q→1 with N=S3×C3×C9 and Q=C3

Direct product G=N×Q with N=S3×C3×C9 and Q=C3
dρLabelID
S3×C32×C9162S3xC3^2xC9486,221

Semidirect products G=N:Q with N=S3×C3×C9 and Q=C3
extensionφ:Q→Out NdρLabelID
(S3×C3×C9)⋊1C3 = S3×C32⋊C9φ: C3/C1C3 ⊆ Out S3×C3×C954(S3xC3xC9):1C3486,95
(S3×C3×C9)⋊2C3 = S3×He3.C3φ: C3/C1C3 ⊆ Out S3×C3×C9546(S3xC3xC9):2C3486,120
(S3×C3×C9)⋊3C3 = S3×He3⋊C3φ: C3/C1C3 ⊆ Out S3×C3×C9546(S3xC3xC9):3C3486,123
(S3×C3×C9)⋊4C3 = C3×S3×3- 1+2φ: C3/C1C3 ⊆ Out S3×C3×C954(S3xC3xC9):4C3486,225
(S3×C3×C9)⋊5C3 = S3×C9○He3φ: C3/C1C3 ⊆ Out S3×C3×C9546(S3xC3xC9):5C3486,226

Non-split extensions G=N.Q with N=S3×C3×C9 and Q=C3
extensionφ:Q→Out NdρLabelID
(S3×C3×C9).1C3 = S3×C9⋊C9φ: C3/C1C3 ⊆ Out S3×C3×C9162(S3xC3xC9).1C3486,97
(S3×C3×C9).2C3 = S3×C3.He3φ: C3/C1C3 ⊆ Out S3×C3×C9546(S3xC3xC9).2C3486,124
(S3×C3×C9).3C3 = S3×C27⋊C3φ: C3/C1C3 ⊆ Out S3×C3×C9546(S3xC3xC9).3C3486,114
(S3×C3×C9).4C3 = S3×C92φ: trivial image162(S3xC3xC9).4C3486,92
(S3×C3×C9).5C3 = S3×C3×C27φ: trivial image162(S3xC3xC9).5C3486,112

׿
×
𝔽