Copied to
clipboard

G = S3×C3×C9order 162 = 2·34

Direct product of C3×C9 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×C3×C9, C323C18, C33.5C6, C3⋊(C3×C18), (C3×C9)⋊13C6, (C32×C9)⋊1C2, C3.4(S3×C32), C32.6(C3×C6), (C3×S3).1C32, (S3×C32).2C3, C32.19(C3×S3), SmallGroup(162,33)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C3×C9
C1C3C32C3×C9C32×C9 — S3×C3×C9
C3 — S3×C3×C9
C1C3×C9

Generators and relations for S3×C3×C9
 G = < a,b,c,d | a3=b9=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 90 in 55 conjugacy classes, 30 normal (12 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C32, C32, C32, C18, C3×S3, C3×S3, C3×C6, C3×C9, C3×C9, C3×C9, C33, S3×C9, C3×C18, S3×C32, C32×C9, S3×C3×C9
Quotients: C1, C2, C3, S3, C6, C9, C32, C18, C3×S3, C3×C6, C3×C9, S3×C9, C3×C18, S3×C32, S3×C3×C9

Smallest permutation representation of S3×C3×C9
On 54 points
Generators in S54
(1 31 41)(2 32 42)(3 33 43)(4 34 44)(5 35 45)(6 36 37)(7 28 38)(8 29 39)(9 30 40)(10 20 51)(11 21 52)(12 22 53)(13 23 54)(14 24 46)(15 25 47)(16 26 48)(17 27 49)(18 19 50)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 28 44)(2 29 45)(3 30 37)(4 31 38)(5 32 39)(6 33 40)(7 34 41)(8 35 42)(9 36 43)(10 54 26)(11 46 27)(12 47 19)(13 48 20)(14 49 21)(15 50 22)(16 51 23)(17 52 24)(18 53 25)
(1 52)(2 53)(3 54)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 28)(18 29)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 37)(27 38)

G:=sub<Sym(54)| (1,31,41)(2,32,42)(3,33,43)(4,34,44)(5,35,45)(6,36,37)(7,28,38)(8,29,39)(9,30,40)(10,20,51)(11,21,52)(12,22,53)(13,23,54)(14,24,46)(15,25,47)(16,26,48)(17,27,49)(18,19,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,44)(2,29,45)(3,30,37)(4,31,38)(5,32,39)(6,33,40)(7,34,41)(8,35,42)(9,36,43)(10,54,26)(11,46,27)(12,47,19)(13,48,20)(14,49,21)(15,50,22)(16,51,23)(17,52,24)(18,53,25), (1,52)(2,53)(3,54)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,37)(27,38)>;

G:=Group( (1,31,41)(2,32,42)(3,33,43)(4,34,44)(5,35,45)(6,36,37)(7,28,38)(8,29,39)(9,30,40)(10,20,51)(11,21,52)(12,22,53)(13,23,54)(14,24,46)(15,25,47)(16,26,48)(17,27,49)(18,19,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,44)(2,29,45)(3,30,37)(4,31,38)(5,32,39)(6,33,40)(7,34,41)(8,35,42)(9,36,43)(10,54,26)(11,46,27)(12,47,19)(13,48,20)(14,49,21)(15,50,22)(16,51,23)(17,52,24)(18,53,25), (1,52)(2,53)(3,54)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,37)(27,38) );

G=PermutationGroup([[(1,31,41),(2,32,42),(3,33,43),(4,34,44),(5,35,45),(6,36,37),(7,28,38),(8,29,39),(9,30,40),(10,20,51),(11,21,52),(12,22,53),(13,23,54),(14,24,46),(15,25,47),(16,26,48),(17,27,49),(18,19,50)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,28,44),(2,29,45),(3,30,37),(4,31,38),(5,32,39),(6,33,40),(7,34,41),(8,35,42),(9,36,43),(10,54,26),(11,46,27),(12,47,19),(13,48,20),(14,49,21),(15,50,22),(16,51,23),(17,52,24),(18,53,25)], [(1,52),(2,53),(3,54),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,28),(18,29),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,37),(27,38)]])

S3×C3×C9 is a maximal subgroup of   He3⋊C18  C3≀S33C3

81 conjugacy classes

class 1  2 3A···3H3I···3Q6A···6H9A···9R9S···9AJ18A···18R
order123···33···36···69···99···918···18
size131···12···23···31···12···23···3

81 irreducible representations

dim111111112222
type+++
imageC1C2C3C3C6C6C9C18S3C3×S3C3×S3S3×C9
kernelS3×C3×C9C32×C9S3×C9S3×C32C3×C9C33C3×S3C32C3×C9C9C32C3
# reps116262181816218

Matrix representation of S3×C3×C9 in GL3(𝔽19) generated by

1100
070
007
,
600
0110
0011
,
100
070
0811
,
100
0110
0018
G:=sub<GL(3,GF(19))| [11,0,0,0,7,0,0,0,7],[6,0,0,0,11,0,0,0,11],[1,0,0,0,7,8,0,0,11],[1,0,0,0,1,0,0,10,18] >;

S3×C3×C9 in GAP, Magma, Sage, TeX

S_3\times C_3\times C_9
% in TeX

G:=Group("S3xC3xC9");
// GroupNames label

G:=SmallGroup(162,33);
// by ID

G=gap.SmallGroup(162,33);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,57,2704]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽