# Extensions 1→N→G→Q→1 with N=C3 and Q=C33.S3

Direct product G=N×Q with N=C3 and Q=C33.S3
dρLabelID
C3×C33.S354C3xC3^3.S3486,232

Semidirect products G=N:Q with N=C3 and Q=C33.S3
extensionφ:Q→Aut NdρLabelID
C3⋊(C33.S3) = C34.11S3φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3:(C3^3.S3)486,244

Non-split extensions G=N.Q with N=C3 and Q=C33.S3
extensionφ:Q→Aut NdρLabelID
C3.1(C33.S3) = C33⋊D9φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3.1(C3^3.S3)486,137
C3.2(C33.S3) = C929C6φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3.2(C3^3.S3)486,144
C3.3(C33.S3) = C9⋊He32C2φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3.3(C3^3.S3)486,148
C3.4(C33.S3) = C9210C6φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3.4(C3^3.S3)486,154
C3.5(C33.S3) = C9211C6φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3.5(C3^3.S3)486,158
C3.6(C33.S3) = C9212C6φ: C33.S3/C3×3- 1+2C2 ⊆ Aut C381C3.6(C3^3.S3)486,159
C3.7(C33.S3) = C9⋊(S3×C9)central extension (φ=1)54C3.7(C3^3.S3)486,138
C3.8(C33.S3) = C34.7S3central stem extension (φ=1)186C3.8(C3^3.S3)486,147
C3.9(C33.S3) = C9⋊C92S3central stem extension (φ=1)546C3.9(C3^3.S3)486,152

׿
×
𝔽