# Extensions 1→N→G→Q→1 with N=C6×He3 and Q=C3

Direct product G=N×Q with N=C6×He3 and Q=C3
dρLabelID
C3×C6×He3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=C6×He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C6×He3)⋊1C3 = C2×C32.24He3φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3):1C3486,63
(C6×He3)⋊2C3 = C2×C32⋊He3φ: C3/C1C3 ⊆ Out C6×He354(C6xHe3):2C3486,196
(C6×He3)⋊3C3 = C6×C3≀C3φ: C3/C1C3 ⊆ Out C6×He354(C6xHe3):3C3486,210
(C6×He3)⋊4C3 = C6×He3⋊C3φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3):4C3486,212
(C6×He3)⋊5C3 = C2×C33⋊C32φ: C3/C1C3 ⊆ Out C6×He3549(C6xHe3):5C3486,215
(C6×He3)⋊6C3 = C2×He3⋊C32φ: C3/C1C3 ⊆ Out C6×He3549(C6xHe3):6C3486,217
(C6×He3)⋊7C3 = C2×3+ 1+4φ: C3/C1C3 ⊆ Out C6×He3549(C6xHe3):7C3486,254

Non-split extensions G=N.Q with N=C6×He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C6×He3).1C3 = C2×C33.C32φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3).1C3486,64
(C6×He3).2C3 = C2×C32.27He3φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3).2C3486,66
(C6×He3).3C3 = C2×He3⋊C9φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3).3C3486,77
(C6×He3).4C3 = C2×C9⋊He3φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3).4C3486,198
(C6×He3).5C3 = C2×C32.23C33φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3).5C3486,199
(C6×He3).6C3 = C6×He3.C3φ: C3/C1C3 ⊆ Out C6×He3162(C6xHe3).6C3486,211
(C6×He3).7C3 = C2×He3.C32φ: C3/C1C3 ⊆ Out C6×He3549(C6xHe3).7C3486,216
(C6×He3).8C3 = C2×3- 1+4φ: C3/C1C3 ⊆ Out C6×He3549(C6xHe3).8C3486,255
(C6×He3).9C3 = C18×He3φ: trivial image162(C6xHe3).9C3486,194
(C6×He3).10C3 = C6×C9○He3φ: trivial image162(C6xHe3).10C3486,253

׿
×
𝔽