Extensions 1→N→G→Q→1 with N=C3 and Q=C2×C9○He3

Direct product G=N×Q with N=C3 and Q=C2×C9○He3
dρLabelID
C6×C9○He3162C6xC9oHe3486,253

Semidirect products G=N:Q with N=C3 and Q=C2×C9○He3
extensionφ:Q→Aut NdρLabelID
C3⋊(C2×C9○He3) = S3×C9○He3φ: C2×C9○He3/C9○He3C2 ⊆ Aut C3546C3:(C2xC9oHe3)486,226

Non-split extensions G=N.Q with N=C3 and Q=C2×C9○He3
extensionφ:Q→Aut NdρLabelID
C3.1(C2×C9○He3) = C2×C923C3central extension (φ=1)162C3.1(C2xC9oHe3)486,193
C3.2(C2×C9○He3) = C18×He3central extension (φ=1)162C3.2(C2xC9oHe3)486,194
C3.3(C2×C9○He3) = C18×3- 1+2central extension (φ=1)162C3.3(C2xC9oHe3)486,195
C3.4(C2×C9○He3) = C2×C9⋊He3central stem extension (φ=1)162C3.4(C2xC9oHe3)486,198
C3.5(C2×C9○He3) = C2×C32.23C33central stem extension (φ=1)162C3.5(C2xC9oHe3)486,199
C3.6(C2×C9○He3) = C2×C9⋊3- 1+2central stem extension (φ=1)162C3.6(C2xC9oHe3)486,200
C3.7(C2×C9○He3) = C2×C33.31C32central stem extension (φ=1)162C3.7(C2xC9oHe3)486,201
C3.8(C2×C9○He3) = C2×C927C3central stem extension (φ=1)162C3.8(C2xC9oHe3)486,202
C3.9(C2×C9○He3) = C2×C924C3central stem extension (φ=1)162C3.9(C2xC9oHe3)486,203
C3.10(C2×C9○He3) = C2×C925C3central stem extension (φ=1)162C3.10(C2xC9oHe3)486,204
C3.11(C2×C9○He3) = C2×C928C3central stem extension (φ=1)162C3.11(C2xC9oHe3)486,205

׿
×
𝔽