Extensions 1→N→G→Q→1 with N=C3 and Q=C2xC9oHe3

Direct product G=NxQ with N=C3 and Q=C2xC9oHe3
dρLabelID
C6xC9oHe3162C6xC9oHe3486,253

Semidirect products G=N:Q with N=C3 and Q=C2xC9oHe3
extensionφ:Q→Aut NdρLabelID
C3:(C2xC9oHe3) = S3xC9oHe3φ: C2xC9oHe3/C9oHe3C2 ⊆ Aut C3546C3:(C2xC9oHe3)486,226

Non-split extensions G=N.Q with N=C3 and Q=C2xC9oHe3
extensionφ:Q→Aut NdρLabelID
C3.1(C2xC9oHe3) = C2xC92:3C3central extension (φ=1)162C3.1(C2xC9oHe3)486,193
C3.2(C2xC9oHe3) = C18xHe3central extension (φ=1)162C3.2(C2xC9oHe3)486,194
C3.3(C2xC9oHe3) = C18x3- 1+2central extension (φ=1)162C3.3(C2xC9oHe3)486,195
C3.4(C2xC9oHe3) = C2xC9:He3central stem extension (φ=1)162C3.4(C2xC9oHe3)486,198
C3.5(C2xC9oHe3) = C2xC32.23C33central stem extension (φ=1)162C3.5(C2xC9oHe3)486,199
C3.6(C2xC9oHe3) = C2xC9:3- 1+2central stem extension (φ=1)162C3.6(C2xC9oHe3)486,200
C3.7(C2xC9oHe3) = C2xC33.31C32central stem extension (φ=1)162C3.7(C2xC9oHe3)486,201
C3.8(C2xC9oHe3) = C2xC92:7C3central stem extension (φ=1)162C3.8(C2xC9oHe3)486,202
C3.9(C2xC9oHe3) = C2xC92:4C3central stem extension (φ=1)162C3.9(C2xC9oHe3)486,203
C3.10(C2xC9oHe3) = C2xC92:5C3central stem extension (φ=1)162C3.10(C2xC9oHe3)486,204
C3.11(C2xC9oHe3) = C2xC92:8C3central stem extension (φ=1)162C3.11(C2xC9oHe3)486,205

׿
x
:
Z
F
o
wr
Q
<