Copied to
clipboard

G = C2×C9○He3order 162 = 2·34

Direct product of C2 and C9○He3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C2×C9○He3, C18.C32, He3.5C6, C6.3C33, 3- 1+24C6, (C3×C9)⋊12C6, (C3×C18)⋊5C3, C9.2(C3×C6), (C2×He3).2C3, C32.5(C3×C6), (C3×C6).5C32, C3.3(C32×C6), (C2×3- 1+2)⋊3C3, SmallGroup(162,50)

Series: Derived Chief Lower central Upper central

C1C3 — C2×C9○He3
C1C3C9C3×C9C9○He3 — C2×C9○He3
C1C3 — C2×C9○He3
C1C18 — C2×C9○He3

Generators and relations for C2×C9○He3
 G = < a,b,c,d,e | a2=b9=c3=e3=1, d1=b6, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=b3c, de=ed >

Subgroups: 82 in 66 conjugacy classes, 58 normal (10 characteristic)
C1, C2, C3, C3, C6, C6, C9, C9, C32, C18, C18, C3×C6, C3×C9, He3, 3- 1+2, C3×C18, C2×He3, C2×3- 1+2, C9○He3, C2×C9○He3
Quotients: C1, C2, C3, C6, C32, C3×C6, C33, C32×C6, C9○He3, C2×C9○He3

Smallest permutation representation of C2×C9○He3
On 54 points
Generators in S54
(1 35)(2 36)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(37 43 40)(38 44 41)(39 45 42)(46 49 52)(47 50 53)(48 51 54)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(1 26 11)(2 27 12)(3 19 13)(4 20 14)(5 21 15)(6 22 16)(7 23 17)(8 24 18)(9 25 10)(28 46 40)(29 47 41)(30 48 42)(31 49 43)(32 50 44)(33 51 45)(34 52 37)(35 53 38)(36 54 39)

G:=sub<Sym(54)| (1,35)(2,36)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,26,11)(2,27,12)(3,19,13)(4,20,14)(5,21,15)(6,22,16)(7,23,17)(8,24,18)(9,25,10)(28,46,40)(29,47,41)(30,48,42)(31,49,43)(32,50,44)(33,51,45)(34,52,37)(35,53,38)(36,54,39)>;

G:=Group( (1,35)(2,36)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,26,11)(2,27,12)(3,19,13)(4,20,14)(5,21,15)(6,22,16)(7,23,17)(8,24,18)(9,25,10)(28,46,40)(29,47,41)(30,48,42)(31,49,43)(32,50,44)(33,51,45)(34,52,37)(35,53,38)(36,54,39) );

G=PermutationGroup([[(1,35),(2,36),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(37,43,40),(38,44,41),(39,45,42),(46,49,52),(47,50,53),(48,51,54)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(1,26,11),(2,27,12),(3,19,13),(4,20,14),(5,21,15),(6,22,16),(7,23,17),(8,24,18),(9,25,10),(28,46,40),(29,47,41),(30,48,42),(31,49,43),(32,50,44),(33,51,45),(34,52,37),(35,53,38),(36,54,39)]])

C2×C9○He3 is a maximal subgroup of   He3.4Dic3  He3.5C12
C2×C9○He3 is a maximal quotient of   C18×He3  C18×3- 1+2

66 conjugacy classes

class 1  2 3A3B3C···3J6A6B6C···6J9A···9F9G···9V18A···18F18G···18V
order12333···3666···69···99···918···1818···18
size11113···3113···31···13···31···13···3

66 irreducible representations

dim1111111133
type++
imageC1C2C3C3C3C6C6C6C9○He3C2×C9○He3
kernelC2×C9○He3C9○He3C3×C18C2×He3C2×3- 1+2C3×C9He33- 1+2C2C1
# reps118216821666

Matrix representation of C2×C9○He3 in GL3(𝔽19) generated by

1800
0180
0018
,
400
040
004
,
1112
0110
007
,
1100
0110
0011
,
1112
007
101818
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[4,0,0,0,4,0,0,0,4],[1,0,0,1,11,0,12,0,7],[11,0,0,0,11,0,0,0,11],[1,0,10,1,0,18,12,7,18] >;

C2×C9○He3 in GAP, Magma, Sage, TeX

C_2\times C_9\circ {\rm He}_3
% in TeX

G:=Group("C2xC9oHe3");
// GroupNames label

G:=SmallGroup(162,50);
// by ID

G=gap.SmallGroup(162,50);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,457,78]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^9=c^3=e^3=1,d^1=b^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,d*e=e*d>;
// generators/relations

׿
×
𝔽