# Extensions 1→N→G→Q→1 with N=C3×C6 and Q=He3

Direct product G=N×Q with N=C3×C6 and Q=He3
dρLabelID
C3×C6×He3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=C3×C6 and Q=He3
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊He3 = C2×C32⋊He3φ: He3/C32C3 ⊆ Aut C3×C654(C3xC6):He3486,196

Non-split extensions G=N.Q with N=C3×C6 and Q=He3
extensionφ:Q→Aut NdρLabelID
(C3×C6).1He3 = C2×C92⋊C3φ: He3/C32C3 ⊆ Aut C3×C6543(C3xC6).1He3486,85
(C3×C6).2He3 = C2×C922C3φ: He3/C32C3 ⊆ Aut C3×C6543(C3xC6).2He3486,86
(C3×C6).3He3 = C2×C92.C3φ: He3/C32C3 ⊆ Aut C3×C6543(C3xC6).3He3486,87
(C3×C6).4He3 = C2×C32.He3φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).4He3486,88
(C3×C6).5He3 = C2×C32.5He3φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).5He3486,89
(C3×C6).6He3 = C2×C32.6He3φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).6He3486,90
(C3×C6).7He3 = C2×C34.C3φ: He3/C32C3 ⊆ Aut C3×C654(C3xC6).7He3486,197
(C3×C6).8He3 = C2×C32.23C33φ: He3/C32C3 ⊆ Aut C3×C6162(C3xC6).8He3486,199
(C3×C6).9He3 = C2×C33⋊C32φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).9He3486,215
(C3×C6).10He3 = C2×He3.C32φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).10He3486,216
(C3×C6).11He3 = C2×He3⋊C32φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).11He3486,217
(C3×C6).12He3 = C2×C32.C33φ: He3/C32C3 ⊆ Aut C3×C6549(C3xC6).12He3486,218
(C3×C6).13He3 = C2×C3.C92central extension (φ=1)486(C3xC6).13He3486,62
(C3×C6).14He3 = C2×C32.24He3central extension (φ=1)162(C3xC6).14He3486,63
(C3×C6).15He3 = C2×C33.C32central extension (φ=1)162(C3xC6).15He3486,64
(C3×C6).16He3 = C2×C33.3C32central extension (φ=1)162(C3xC6).16He3486,65
(C3×C6).17He3 = C2×C32.27He3central extension (φ=1)162(C3xC6).17He3486,66
(C3×C6).18He3 = C2×C32.28He3central extension (φ=1)162(C3xC6).18He3486,67
(C3×C6).19He3 = C2×C32.29He3central extension (φ=1)162(C3xC6).19He3486,68
(C3×C6).20He3 = C2×C33.7C32central extension (φ=1)162(C3xC6).20He3486,69
(C3×C6).21He3 = C2×C33⋊C9central extension (φ=1)54(C3xC6).21He3486,73
(C3×C6).22He3 = C2×C32.19He3central extension (φ=1)162(C3xC6).22He3486,74
(C3×C6).23He3 = C2×C32.20He3central extension (φ=1)162(C3xC6).23He3486,75
(C3×C6).24He3 = C2×He3⋊C9central extension (φ=1)162(C3xC6).24He3486,77
(C3×C6).25He3 = C2×3- 1+2⋊C9central extension (φ=1)162(C3xC6).25He3486,78
(C3×C6).26He3 = C6×C32⋊C9central extension (φ=1)162(C3xC6).26He3486,191
(C3×C6).27He3 = C6×C3≀C3central extension (φ=1)54(C3xC6).27He3486,210
(C3×C6).28He3 = C6×He3.C3central extension (φ=1)162(C3xC6).28He3486,211
(C3×C6).29He3 = C6×He3⋊C3central extension (φ=1)162(C3xC6).29He3486,212
(C3×C6).30He3 = C6×C3.He3central extension (φ=1)162(C3xC6).30He3486,213

׿
×
𝔽