extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1He3 = C2×C92⋊C3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).1He3 | 486,85 |
(C3×C6).2He3 = C2×C92⋊2C3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).2He3 | 486,86 |
(C3×C6).3He3 = C2×C92.C3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).3He3 | 486,87 |
(C3×C6).4He3 = C2×C32.He3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).4He3 | 486,88 |
(C3×C6).5He3 = C2×C32.5He3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).5He3 | 486,89 |
(C3×C6).6He3 = C2×C32.6He3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).6He3 | 486,90 |
(C3×C6).7He3 = C2×C34.C3 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | | (C3xC6).7He3 | 486,197 |
(C3×C6).8He3 = C2×C32.23C33 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).8He3 | 486,199 |
(C3×C6).9He3 = C2×C33⋊C32 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).9He3 | 486,215 |
(C3×C6).10He3 = C2×He3.C32 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).10He3 | 486,216 |
(C3×C6).11He3 = C2×He3⋊C32 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).11He3 | 486,217 |
(C3×C6).12He3 = C2×C32.C33 | φ: He3/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).12He3 | 486,218 |
(C3×C6).13He3 = C2×C3.C92 | central extension (φ=1) | 486 | | (C3xC6).13He3 | 486,62 |
(C3×C6).14He3 = C2×C32.24He3 | central extension (φ=1) | 162 | | (C3xC6).14He3 | 486,63 |
(C3×C6).15He3 = C2×C33.C32 | central extension (φ=1) | 162 | | (C3xC6).15He3 | 486,64 |
(C3×C6).16He3 = C2×C33.3C32 | central extension (φ=1) | 162 | | (C3xC6).16He3 | 486,65 |
(C3×C6).17He3 = C2×C32.27He3 | central extension (φ=1) | 162 | | (C3xC6).17He3 | 486,66 |
(C3×C6).18He3 = C2×C32.28He3 | central extension (φ=1) | 162 | | (C3xC6).18He3 | 486,67 |
(C3×C6).19He3 = C2×C32.29He3 | central extension (φ=1) | 162 | | (C3xC6).19He3 | 486,68 |
(C3×C6).20He3 = C2×C33.7C32 | central extension (φ=1) | 162 | | (C3xC6).20He3 | 486,69 |
(C3×C6).21He3 = C2×C33⋊C9 | central extension (φ=1) | 54 | | (C3xC6).21He3 | 486,73 |
(C3×C6).22He3 = C2×C32.19He3 | central extension (φ=1) | 162 | | (C3xC6).22He3 | 486,74 |
(C3×C6).23He3 = C2×C32.20He3 | central extension (φ=1) | 162 | | (C3xC6).23He3 | 486,75 |
(C3×C6).24He3 = C2×He3⋊C9 | central extension (φ=1) | 162 | | (C3xC6).24He3 | 486,77 |
(C3×C6).25He3 = C2×3- 1+2⋊C9 | central extension (φ=1) | 162 | | (C3xC6).25He3 | 486,78 |
(C3×C6).26He3 = C6×C32⋊C9 | central extension (φ=1) | 162 | | (C3xC6).26He3 | 486,191 |
(C3×C6).27He3 = C6×C3≀C3 | central extension (φ=1) | 54 | | (C3xC6).27He3 | 486,210 |
(C3×C6).28He3 = C6×He3.C3 | central extension (φ=1) | 162 | | (C3xC6).28He3 | 486,211 |
(C3×C6).29He3 = C6×He3⋊C3 | central extension (φ=1) | 162 | | (C3xC6).29He3 | 486,212 |
(C3×C6).30He3 = C6×C3.He3 | central extension (φ=1) | 162 | | (C3xC6).30He3 | 486,213 |