Extensions 1→N→G→Q→1 with N=C62 and Q=D4

Direct product G=N×Q with N=C62 and Q=D4
dρLabelID
D4×C62248D4xC62496,38

Semidirect products G=N:Q with N=C62 and Q=D4
extensionφ:Q→Aut NdρLabelID
C621D4 = C2×D124φ: D4/C4C2 ⊆ Aut C62248C62:1D4496,29
C622D4 = C2×C31⋊D4φ: D4/C22C2 ⊆ Aut C62248C62:2D4496,36

Non-split extensions G=N.Q with N=C62 and Q=D4
extensionφ:Q→Aut NdρLabelID
C62.1D4 = C248⋊C2φ: D4/C4C2 ⊆ Aut C622482C62.1D4496,5
C62.2D4 = D248φ: D4/C4C2 ⊆ Aut C622482+C62.2D4496,6
C62.3D4 = Dic124φ: D4/C4C2 ⊆ Aut C624962-C62.3D4496,7
C62.4D4 = C4⋊Dic31φ: D4/C4C2 ⊆ Aut C62496C62.4D4496,12
C62.5D4 = Dic31⋊C4φ: D4/C22C2 ⊆ Aut C62496C62.5D4496,11
C62.6D4 = D62⋊C4φ: D4/C22C2 ⊆ Aut C62248C62.6D4496,13
C62.7D4 = D4⋊D31φ: D4/C22C2 ⊆ Aut C622484+C62.7D4496,14
C62.8D4 = D4.D31φ: D4/C22C2 ⊆ Aut C622484-C62.8D4496,15
C62.9D4 = Q8⋊D31φ: D4/C22C2 ⊆ Aut C622484+C62.9D4496,16
C62.10D4 = C31⋊Q16φ: D4/C22C2 ⊆ Aut C624964-C62.10D4496,17
C62.11D4 = C23.D31φ: D4/C22C2 ⊆ Aut C62248C62.11D4496,18
C62.12D4 = C22⋊C4×C31central extension (φ=1)248C62.12D4496,20
C62.13D4 = C4⋊C4×C31central extension (φ=1)496C62.13D4496,21
C62.14D4 = D8×C31central extension (φ=1)2482C62.14D4496,24
C62.15D4 = SD16×C31central extension (φ=1)2482C62.15D4496,25
C62.16D4 = Q16×C31central extension (φ=1)4962C62.16D4496,26

׿
×
𝔽