p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.37C23, C42.36C22, C22.27C24, (C2×C4)⋊5Q8, C4○2(C4⋊Q8), C4⋊Q8⋊20C2, (C4×Q8)⋊8C2, C4.25(C2×Q8), C4○3(C22⋊Q8), C4.19(C4○D4), C22.3(C2×Q8), C2.6(C22×Q8), C4⋊C4.73C22, (C2×C4).15C23, (C2×C42).20C2, C4○2(C42.C2), C42.C2⋊14C2, C22⋊Q8.10C2, (C2×Q8).57C22, C42⋊C2.11C2, C22⋊C4.15C22, (C22×C4).126C22, (C2×C4)○(C4⋊Q8), C2.14(C2×C4○D4), SmallGroup(64,214)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.37C23
 G = < a,b,c,d,e,f | a2=b2=c2=1, d2=e2=c, f2=b, dad-1=ab=ba, ac=ca, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ede-1=cd=dc, ce=ec, cf=fc, df=fd, ef=fe >
Subgroups: 137 in 111 conjugacy classes, 85 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×C42, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C23.37C23
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, C23.37C23
Character table of C23.37C23
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | 4T | 4U | 4V | |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial | 
| ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 | 
| ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 | 
| ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 | 
| ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 | 
| ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 | 
| ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 | 
| ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 | 
| ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 | 
| ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 | 
| ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 | 
| ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 | 
| ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 | 
| ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 | 
| ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 | 
| ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 | 
| ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 | 
| ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 | 
| ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 | 
| ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 | 
| ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 2i | -2 | -2i | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 2i | 2 | -2i | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | -2 | 2i | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | -2 | -2i | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | -2i | -2 | 2i | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 2 | 2i | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 2 | -2i | -2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
| ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | -2i | 2 | 2i | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 | 
(2 28)(4 26)(5 20)(7 18)(10 14)(12 16)(22 30)(24 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 3 23)(2 24 4 22)(5 12 7 10)(6 11 8 9)(13 17 15 19)(14 20 16 18)(25 31 27 29)(26 30 28 32)
(1 15 27 11)(2 16 28 12)(3 13 25 9)(4 14 26 10)(5 22 20 30)(6 23 17 31)(7 24 18 32)(8 21 19 29)
G:=sub<Sym(32)| (2,28)(4,26)(5,20)(7,18)(10,14)(12,16)(22,30)(24,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,24,4,22)(5,12,7,10)(6,11,8,9)(13,17,15,19)(14,20,16,18)(25,31,27,29)(26,30,28,32), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,20,30)(6,23,17,31)(7,24,18,32)(8,21,19,29)>;
G:=Group( (2,28)(4,26)(5,20)(7,18)(10,14)(12,16)(22,30)(24,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,24,4,22)(5,12,7,10)(6,11,8,9)(13,17,15,19)(14,20,16,18)(25,31,27,29)(26,30,28,32), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,20,30)(6,23,17,31)(7,24,18,32)(8,21,19,29) );
G=PermutationGroup([[(2,28),(4,26),(5,20),(7,18),(10,14),(12,16),(22,30),(24,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,3,23),(2,24,4,22),(5,12,7,10),(6,11,8,9),(13,17,15,19),(14,20,16,18),(25,31,27,29),(26,30,28,32)], [(1,15,27,11),(2,16,28,12),(3,13,25,9),(4,14,26,10),(5,22,20,30),(6,23,17,31),(7,24,18,32),(8,21,19,29)]])
C23.37C23 is a maximal subgroup of
 C22.33C25  C22.44C25  C22.47C25  C22.50C25  C22.64C25  Q8×C4○D4  C22.71C25  C22.84C25  C22.90C25  C22.91C25  C22.92C25  C22.93C25  C22.95C25  C22.96C25  C22.97C25  C22.98C25  C22.99C25  C22.100C25  C22.104C25  C22.107C25  C23.144C24  C23.146C24  C22.120C25  C22.136C25  C22.137C25  C22.139C25  C22.143C25  C22.144C25  C22.145C25  C22.146C25  C22.150C25  C22.152C25  C22.153C25  C22.154C25
 C42.D2p: C42.46D4  C42.401D4  C42.316D4  C42.54D4  C42.404D4  C42.56D4  C42.60D4  C42.62D4 ...
 (C2×C4p).C23: C42.286C23  C42.287C23  M4(2)⋊9Q8  C42.696C23  C42.304C23  C42.305C23  (Q8×Dic3)⋊C2  (Q8×Dic5)⋊C2 ...
C23.37C23 is a maximal quotient of 
 C23.167C24  C42⋊14Q8  C23.178C24  C4×C42.C2  C42.34Q8  C23.323C24  C24.567C23  C23.346C24  C23.397C24  C23.407C24  C23.411C24  C23.420C24  C23.422C24  C23.449C24  C24.584C23  C42.36Q8  C24.338C23  C23.485C24  C23.486C24  C24.345C23  C23.488C24  C24.346C23  C23.490C24  C42⋊8Q8  C42.38Q8  C24.355C23  C23.508C24  C42⋊9Q8  C24.379C23  C42⋊11Q8  C23.567C24  C24.599C23  C42⋊15Q8  C43.18C2
 C42.D2p: C4×C22⋊Q8  C4×C4⋊Q8  C42.162D4  C42⋊5Q8  C42.439D4  C42.440D4  C43.15C2  C42⋊18Q8 ...
 C4⋊C4.D2p: C23.329C24  C24.267C23  C24.268C23  C23.351C24  C23.362C24  C24.285C23  C23.392C24  C42⋊6Q8 ...
Matrix representation of C23.37C23 ►in GL4(𝔽5) generated by
| 1 | 0 | 0 | 0 | 
| 0 | 4 | 0 | 0 | 
| 0 | 0 | 1 | 0 | 
| 0 | 0 | 0 | 4 | 
| 4 | 0 | 0 | 0 | 
| 0 | 4 | 0 | 0 | 
| 0 | 0 | 4 | 0 | 
| 0 | 0 | 0 | 4 | 
| 1 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 
| 0 | 0 | 4 | 0 | 
| 0 | 0 | 0 | 4 | 
| 0 | 1 | 0 | 0 | 
| 1 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 1 | 
| 0 | 0 | 4 | 0 | 
| 4 | 0 | 0 | 0 | 
| 0 | 4 | 0 | 0 | 
| 0 | 0 | 2 | 0 | 
| 0 | 0 | 0 | 3 | 
| 3 | 0 | 0 | 0 | 
| 0 | 3 | 0 | 0 | 
| 0 | 0 | 2 | 0 | 
| 0 | 0 | 0 | 2 | 
G:=sub<GL(4,GF(5))| [1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[0,1,0,0,1,0,0,0,0,0,0,4,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,2,0,0,0,0,3],[3,0,0,0,0,3,0,0,0,0,2,0,0,0,0,2] >;
C23.37C23 in GAP, Magma, Sage, TeX
C_2^3._{37}C_2^3 % in TeX
G:=Group("C2^3.37C2^3"); // GroupNames label
G:=SmallGroup(64,214);
// by ID
G=gap.SmallGroup(64,214);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,192,217,650,158,69]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=1,d^2=e^2=c,f^2=b,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,d*f=f*d,e*f=f*e>;
// generators/relations
Export