direct product, abelian, monomial, 2-elementary
Aliases: C2×C34, SmallGroup(68,5)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C34 |
C1 — C2×C34 |
C1 — C2×C34 |
Generators and relations for C2×C34
G = < a,b | a2=b34=1, ab=ba >
(1 66)(2 67)(3 68)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)(32 63)(33 64)(34 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
G:=sub<Sym(68)| (1,66)(2,67)(3,68)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62)(32,63)(33,64)(34,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)>;
G:=Group( (1,66)(2,67)(3,68)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62)(32,63)(33,64)(34,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68) );
G=PermutationGroup([[(1,66),(2,67),(3,68),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62),(32,63),(33,64),(34,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)]])
C2×C34 is a maximal subgroup of
C17⋊D4
68 conjugacy classes
class | 1 | 2A | 2B | 2C | 17A | ··· | 17P | 34A | ··· | 34AV |
order | 1 | 2 | 2 | 2 | 17 | ··· | 17 | 34 | ··· | 34 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C17 | C34 |
kernel | C2×C34 | C34 | C22 | C2 |
# reps | 1 | 3 | 16 | 48 |
Matrix representation of C2×C34 ►in GL2(𝔽103) generated by
1 | 0 |
0 | 102 |
73 | 0 |
0 | 13 |
G:=sub<GL(2,GF(103))| [1,0,0,102],[73,0,0,13] >;
C2×C34 in GAP, Magma, Sage, TeX
C_2\times C_{34}
% in TeX
G:=Group("C2xC34");
// GroupNames label
G:=SmallGroup(68,5);
// by ID
G=gap.SmallGroup(68,5);
# by ID
G:=PCGroup([3,-2,-2,-17]);
// Polycyclic
G:=Group<a,b|a^2=b^34=1,a*b=b*a>;
// generators/relations
Export