direct product, cyclic, abelian, monomial
Aliases: C34, also denoted Z34, SmallGroup(34,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C34 |
C1 — C34 |
C1 — C34 |
Generators and relations for C34
G = < a | a34=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)
G:=sub<Sym(34)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)]])
C34 is a maximal subgroup of
Dic17
34 conjugacy classes
class | 1 | 2 | 17A | ··· | 17P | 34A | ··· | 34P |
order | 1 | 2 | 17 | ··· | 17 | 34 | ··· | 34 |
size | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C17 | C34 |
kernel | C34 | C17 | C2 | C1 |
# reps | 1 | 1 | 16 | 16 |
Matrix representation of C34 ►in GL1(𝔽103) generated by
90 |
G:=sub<GL(1,GF(103))| [90] >;
C34 in GAP, Magma, Sage, TeX
C_{34}
% in TeX
G:=Group("C34");
// GroupNames label
G:=SmallGroup(34,2);
// by ID
G=gap.SmallGroup(34,2);
# by ID
G:=PCGroup([2,-2,-17]);
// Polycyclic
G:=Group<a|a^34=1>;
// generators/relations
Export