Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C2

Direct product G=N×Q with N=S3×C6 and Q=C2
dρLabelID
S3×C2×C624S3xC2xC672,48

Semidirect products G=N:Q with N=S3×C6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C2 = D6⋊S3φ: C2/C1C2 ⊆ Out S3×C6244-(S3xC6):1C272,22
(S3×C6)⋊2C2 = C3⋊D12φ: C2/C1C2 ⊆ Out S3×C6124+(S3xC6):2C272,23
(S3×C6)⋊3C2 = C3×D12φ: C2/C1C2 ⊆ Out S3×C6242(S3xC6):3C272,28
(S3×C6)⋊4C2 = C3×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C6122(S3xC6):4C272,30
(S3×C6)⋊5C2 = C2×S32φ: C2/C1C2 ⊆ Out S3×C6124+(S3xC6):5C272,46

Non-split extensions G=N.Q with N=S3×C6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C6).C2 = S3×Dic3φ: C2/C1C2 ⊆ Out S3×C6244-(S3xC6).C272,20
(S3×C6).2C2 = S3×C12φ: trivial image242(S3xC6).2C272,27

׿
×
𝔽