Extensions 1→N→G→Q→1 with N=C2 and Q=2- 1+4

Direct product G=N×Q with N=C2 and Q=2- 1+4
dρLabelID
C2×2- 1+432C2xES-(2,2)64,265


Non-split extensions G=N.Q with N=C2 and Q=2- 1+4
extensionφ:Q→Aut NdρLabelID
C2.12- 1+4 = C23.32C23central extension (φ=1)32C2.1ES-(2,2)64,200
C2.22- 1+4 = C23.33C23central extension (φ=1)32C2.2ES-(2,2)64,201
C2.32- 1+4 = C23.38C23central stem extension (φ=1)32C2.3ES-(2,2)64,217
C2.42- 1+4 = C22.31C24central stem extension (φ=1)32C2.4ES-(2,2)64,218
C2.52- 1+4 = C22.33C24central stem extension (φ=1)32C2.5ES-(2,2)64,220
C2.62- 1+4 = C22.35C24central stem extension (φ=1)32C2.6ES-(2,2)64,222
C2.72- 1+4 = C22.36C24central stem extension (φ=1)32C2.7ES-(2,2)64,223
C2.82- 1+4 = C23.41C23central stem extension (φ=1)32C2.8ES-(2,2)64,225
C2.92- 1+4 = D46D4central stem extension (φ=1)32C2.9ES-(2,2)64,228
C2.102- 1+4 = Q85D4central stem extension (φ=1)32C2.10ES-(2,2)64,229
C2.112- 1+4 = D4×Q8central stem extension (φ=1)32C2.11ES-(2,2)64,230
C2.122- 1+4 = C22.46C24central stem extension (φ=1)32C2.12ES-(2,2)64,233
C2.132- 1+4 = C22.50C24central stem extension (φ=1)32C2.13ES-(2,2)64,237
C2.142- 1+4 = Q83Q8central stem extension (φ=1)64C2.14ES-(2,2)64,238
C2.152- 1+4 = C22.56C24central stem extension (φ=1)32C2.15ES-(2,2)64,243
C2.162- 1+4 = C22.57C24central stem extension (φ=1)32C2.16ES-(2,2)64,244
C2.172- 1+4 = C22.58C24central stem extension (φ=1)64C2.17ES-(2,2)64,245

׿
×
𝔽