direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×2- 1+4, C2.5C25, C4.13C24, D4.8C23, Q8.8C23, C22.3C24, C23.50C23, Q8○(C2×D4), D4○(C2×Q8), C4○D4⋊7C22, (C2×C4).46C23, (C22×Q8)⋊10C2, (C2×Q8)⋊17C22, (C2×D4).82C22, (C22×C4).82C22, (C2×C4○D4)⋊14C2, SmallGroup(64,265)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×2- 1+4
G = < a,b,c,d,e | a2=b4=c2=1, d2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=b2d >
Subgroups: 417 in 397 conjugacy classes, 377 normal (4 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, Q8, C23, C22×C4, C2×D4, C2×Q8, C4○D4, C22×Q8, C2×C4○D4, 2- 1+4, C2×2- 1+4
Quotients: C1, C2, C22, C23, C24, 2- 1+4, C25, C2×2- 1+4
(1 31)(2 32)(3 29)(4 30)(5 15)(6 16)(7 13)(8 14)(9 26)(10 27)(11 28)(12 25)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(2 4)(5 7)(10 12)(13 15)(18 20)(22 24)(25 27)(30 32)
(1 28 3 26)(2 25 4 27)(5 18 7 20)(6 19 8 17)(9 31 11 29)(10 32 12 30)(13 24 15 22)(14 21 16 23)
(1 16 3 14)(2 13 4 15)(5 32 7 30)(6 29 8 31)(9 19 11 17)(10 20 12 18)(21 26 23 28)(22 27 24 25)
G:=sub<Sym(32)| (1,31)(2,32)(3,29)(4,30)(5,15)(6,16)(7,13)(8,14)(9,26)(10,27)(11,28)(12,25)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24)(25,27)(30,32), (1,28,3,26)(2,25,4,27)(5,18,7,20)(6,19,8,17)(9,31,11,29)(10,32,12,30)(13,24,15,22)(14,21,16,23), (1,16,3,14)(2,13,4,15)(5,32,7,30)(6,29,8,31)(9,19,11,17)(10,20,12,18)(21,26,23,28)(22,27,24,25)>;
G:=Group( (1,31)(2,32)(3,29)(4,30)(5,15)(6,16)(7,13)(8,14)(9,26)(10,27)(11,28)(12,25)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24)(25,27)(30,32), (1,28,3,26)(2,25,4,27)(5,18,7,20)(6,19,8,17)(9,31,11,29)(10,32,12,30)(13,24,15,22)(14,21,16,23), (1,16,3,14)(2,13,4,15)(5,32,7,30)(6,29,8,31)(9,19,11,17)(10,20,12,18)(21,26,23,28)(22,27,24,25) );
G=PermutationGroup([[(1,31),(2,32),(3,29),(4,30),(5,15),(6,16),(7,13),(8,14),(9,26),(10,27),(11,28),(12,25),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(2,4),(5,7),(10,12),(13,15),(18,20),(22,24),(25,27),(30,32)], [(1,28,3,26),(2,25,4,27),(5,18,7,20),(6,19,8,17),(9,31,11,29),(10,32,12,30),(13,24,15,22),(14,21,16,23)], [(1,16,3,14),(2,13,4,15),(5,32,7,30),(6,29,8,31),(9,19,11,17),(10,20,12,18),(21,26,23,28),(22,27,24,25)]])
C2×2- 1+4 is a maximal subgroup of
2- 1+4⋊2C4 (C22×Q8)⋊C4 C23.4C24 M4(2).25C23 2- 1+4⋊4C4 (C2×Q8)⋊16D4 Q8.(C2×D4) (C2×Q8)⋊17D4 M4(2).C23 C22.75C25 C22.76C25 C22.78C25 C4⋊2- 1+4 C22.88C25 C22.89C25 C4.C25 2- 1+6
C2×2- 1+4 is a maximal quotient of
C22.50C25 C2×D4×Q8 C22.71C25 C22.75C25 C22.78C25 C22.81C25 C22.84C25 C4⋊2- 1+4 C22.88C25 C22.91C25 C22.92C25 C22.96C25 C22.98C25 C22.100C25 C22.104C25 C22.105C25 C22.107C25 C23.144C24 C22.111C25 C23.146C24 C22.120C25 C22.124C25 C22.125C25 C22.127C25 C22.130C25 C22.133C25 C22.136C25 C22.137C25 C22.139C25 C22.141C25 C22.142C25 C22.143C25 C22.144C25 C22.145C25 C22.146C25 C22.148C25 C22.150C25 C22.152C25 C22.153C25 C22.154C25
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 4A | ··· | 4T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | 2- 1+4 |
kernel | C2×2- 1+4 | C22×Q8 | C2×C4○D4 | 2- 1+4 | C2 |
# reps | 1 | 5 | 10 | 16 | 2 |
Matrix representation of C2×2- 1+4 ►in GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 3 | 3 | 2 | 4 |
0 | 2 | 0 | 0 | 0 |
0 | 3 | 0 | 2 | 2 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 1 | 1 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 4 | 4 | 1 | 2 |
0 | 0 | 1 | 4 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |
0 | 3 | 3 | 2 | 4 |
0 | 2 | 2 | 0 | 3 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,0,3,2,3,0,0,3,0,0,0,2,2,0,2,0,0,4,0,2],[4,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,4,0,0,1,0,4,1,0,0,0,1,4,0,0,0,2,4],[4,0,0,0,0,0,0,2,3,2,0,2,0,3,2,0,0,0,2,0,0,0,0,4,3] >;
C2×2- 1+4 in GAP, Magma, Sage, TeX
C_2\times 2_-^{1+4}
% in TeX
G:=Group("C2xES-(2,2)");
// GroupNames label
G:=SmallGroup(64,265);
// by ID
G=gap.SmallGroup(64,265);
# by ID
G:=PCGroup([6,-2,2,2,2,2,-2,409,199,332,158,963]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations