Copied to
clipboard

G = S3×C22order 132 = 22·3·11

Direct product of C22 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C22, C6⋊C22, C663C2, C334C22, C3⋊(C2×C22), SmallGroup(132,8)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C22
C1C3C33S3×C11 — S3×C22
C3 — S3×C22
C1C22

Generators and relations for S3×C22
 G = < a,b,c | a22=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
3C22
3C22
3C22
3C2×C22

Smallest permutation representation of S3×C22
On 66 points
Generators in S66
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)
(1 47 24)(2 48 25)(3 49 26)(4 50 27)(5 51 28)(6 52 29)(7 53 30)(8 54 31)(9 55 32)(10 56 33)(11 57 34)(12 58 35)(13 59 36)(14 60 37)(15 61 38)(16 62 39)(17 63 40)(18 64 41)(19 65 42)(20 66 43)(21 45 44)(22 46 23)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(23 57)(24 58)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 65)(32 66)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 55)(44 56)

G:=sub<Sym(66)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,47,24)(2,48,25)(3,49,26)(4,50,27)(5,51,28)(6,52,29)(7,53,30)(8,54,31)(9,55,32)(10,56,33)(11,57,34)(12,58,35)(13,59,36)(14,60,37)(15,61,38)(16,62,39)(17,63,40)(18,64,41)(19,65,42)(20,66,43)(21,45,44)(22,46,23), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,65)(32,66)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,47,24)(2,48,25)(3,49,26)(4,50,27)(5,51,28)(6,52,29)(7,53,30)(8,54,31)(9,55,32)(10,56,33)(11,57,34)(12,58,35)(13,59,36)(14,60,37)(15,61,38)(16,62,39)(17,63,40)(18,64,41)(19,65,42)(20,66,43)(21,45,44)(22,46,23), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,65)(32,66)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)], [(1,47,24),(2,48,25),(3,49,26),(4,50,27),(5,51,28),(6,52,29),(7,53,30),(8,54,31),(9,55,32),(10,56,33),(11,57,34),(12,58,35),(13,59,36),(14,60,37),(15,61,38),(16,62,39),(17,63,40),(18,64,41),(19,65,42),(20,66,43),(21,45,44),(22,46,23)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(23,57),(24,58),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,65),(32,66),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,55),(44,56)]])

S3×C22 is a maximal subgroup of   C33⋊D4  C11⋊D12

66 conjugacy classes

class 1 2A2B2C 3  6 11A···11J22A···22J22K···22AD33A···33J66A···66J
order12223611···1122···2222···2233···3366···66
size1133221···11···13···32···22···2

66 irreducible representations

dim1111112222
type+++++
imageC1C2C2C11C22C22S3D6S3×C11S3×C22
kernelS3×C22S3×C11C66D6S3C6C22C11C2C1
# reps121102010111010

Matrix representation of S3×C22 in GL2(𝔽23) generated by

70
07
,
2210
160
,
2210
01
G:=sub<GL(2,GF(23))| [7,0,0,7],[22,16,10,0],[22,0,10,1] >;

S3×C22 in GAP, Magma, Sage, TeX

S_3\times C_{22}
% in TeX

G:=Group("S3xC22");
// GroupNames label

G:=SmallGroup(132,8);
// by ID

G=gap.SmallGroup(132,8);
# by ID

G:=PCGroup([4,-2,-2,-11,-3,1411]);
// Polycyclic

G:=Group<a,b,c|a^22=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C22 in TeX

׿
×
𝔽