# Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic3

Direct product G=N×Q with N=C22 and Q=C2×Dic3
dρLabelID
C23×Dic396C2^3xDic396,218

Semidirect products G=N:Q with N=C22 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×Dic3) = C2×A4⋊C4φ: C2×Dic3/C22S3 ⊆ Aut C2224C2^2:(C2xDic3)96,194
C222(C2×Dic3) = D4×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2248C2^2:2(C2xDic3)96,141
C223(C2×Dic3) = C2×C6.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2248C2^2:3(C2xDic3)96,159

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic3) = D4.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C22484C2^2.1(C2xDic3)96,155
C22.2(C2×Dic3) = C12.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C22244C2^2.2(C2xDic3)96,40
C22.3(C2×Dic3) = C23.7D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C22244C2^2.3(C2xDic3)96,41
C22.4(C2×Dic3) = C12.10D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C22484C2^2.4(C2xDic3)96,43
C22.5(C2×Dic3) = C23.26D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2248C2^2.5(C2xDic3)96,133
C22.6(C2×Dic3) = C4×C3⋊C8central extension (φ=1)96C2^2.6(C2xDic3)96,9
C22.7(C2×Dic3) = C42.S3central extension (φ=1)96C2^2.7(C2xDic3)96,10
C22.8(C2×Dic3) = C12⋊C8central extension (φ=1)96C2^2.8(C2xDic3)96,11
C22.9(C2×Dic3) = C12.55D4central extension (φ=1)48C2^2.9(C2xDic3)96,37
C22.10(C2×Dic3) = C6.C42central extension (φ=1)96C2^2.10(C2xDic3)96,38
C22.11(C2×Dic3) = C22×C3⋊C8central extension (φ=1)96C2^2.11(C2xDic3)96,127
C22.12(C2×Dic3) = C2×C4.Dic3central extension (φ=1)48C2^2.12(C2xDic3)96,128
C22.13(C2×Dic3) = C2×C4×Dic3central extension (φ=1)96C2^2.13(C2xDic3)96,129
C22.14(C2×Dic3) = C2×C4⋊Dic3central extension (φ=1)96C2^2.14(C2xDic3)96,132

׿
×
𝔽