Copied to
clipboard

G = C12.55D4order 96 = 25·3

12nd non-split extension by C12 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.55D4, C6.6M4(2), C23.3Dic3, (C2×C6)⋊2C8, C222(C3⋊C8), C32(C22⋊C8), (C2×C12).4C4, C6.10(C2×C8), (C2×C4).94D6, (C22×C6).5C4, (C22×C4).3S3, (C2×C4).4Dic3, C4.30(C3⋊D4), C6.12(C22⋊C4), (C22×C12).11C2, C2.3(C4.Dic3), C22.9(C2×Dic3), (C2×C12).108C22, C2.1(C6.D4), C2.5(C2×C3⋊C8), (C2×C3⋊C8)⋊10C2, (C2×C6).27(C2×C4), SmallGroup(96,37)

Series: Derived Chief Lower central Upper central

C1C6 — C12.55D4
C1C3C6C12C2×C12C2×C3⋊C8 — C12.55D4
C3C6 — C12.55D4
C1C2×C4C22×C4

Generators and relations for C12.55D4
 G = < a,b,c | a12=1, b4=a6, c2=a9, bab-1=cac-1=a5, cbc-1=a3b3 >

2C2
2C2
2C4
2C22
2C22
2C6
2C6
2C2×C4
2C2×C4
6C8
6C8
2C2×C6
2C12
2C2×C6
3C2×C8
3C2×C8
2C3⋊C8
2C2×C12
2C3⋊C8
2C2×C12
3C22⋊C8

Smallest permutation representation of C12.55D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 42 22 7 27 48 16)(2 26 43 15 8 32 37 21)(3 31 44 20 9 25 38 14)(4 36 45 13 10 30 39 19)(5 29 46 18 11 35 40 24)(6 34 47 23 12 28 41 17)
(1 13 10 22 7 19 4 16)(2 18 11 15 8 24 5 21)(3 23 12 20 9 17 6 14)(25 38 34 47 31 44 28 41)(26 43 35 40 32 37 29 46)(27 48 36 45 33 42 30 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,42,22,7,27,48,16)(2,26,43,15,8,32,37,21)(3,31,44,20,9,25,38,14)(4,36,45,13,10,30,39,19)(5,29,46,18,11,35,40,24)(6,34,47,23,12,28,41,17), (1,13,10,22,7,19,4,16)(2,18,11,15,8,24,5,21)(3,23,12,20,9,17,6,14)(25,38,34,47,31,44,28,41)(26,43,35,40,32,37,29,46)(27,48,36,45,33,42,30,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,42,22,7,27,48,16)(2,26,43,15,8,32,37,21)(3,31,44,20,9,25,38,14)(4,36,45,13,10,30,39,19)(5,29,46,18,11,35,40,24)(6,34,47,23,12,28,41,17), (1,13,10,22,7,19,4,16)(2,18,11,15,8,24,5,21)(3,23,12,20,9,17,6,14)(25,38,34,47,31,44,28,41)(26,43,35,40,32,37,29,46)(27,48,36,45,33,42,30,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,42,22,7,27,48,16),(2,26,43,15,8,32,37,21),(3,31,44,20,9,25,38,14),(4,36,45,13,10,30,39,19),(5,29,46,18,11,35,40,24),(6,34,47,23,12,28,41,17)], [(1,13,10,22,7,19,4,16),(2,18,11,15,8,24,5,21),(3,23,12,20,9,17,6,14),(25,38,34,47,31,44,28,41),(26,43,35,40,32,37,29,46),(27,48,36,45,33,42,30,39)]])

C12.55D4 is a maximal subgroup of
C6.C4≀C2  C4⋊Dic3⋊C4  (C22×S3)⋊C8  (C2×Dic3)⋊C8  C24.3Dic3  (C2×C12)⋊C8  (C6×D4)⋊C4  (C6×Q8)⋊C4  Dic3.5M4(2)  Dic3.M4(2)  C24⋊C4⋊C2  S3×C22⋊C8  D6⋊M4(2)  D6⋊C8⋊C2  C42.285D6  C42.270D6  (C2×C6).40D8  C4⋊C4.228D6  C4⋊C4.230D6  C4⋊C4.231D6  C4⋊C4.233D6  C42.187D6  C4⋊C4.236D6  D4×C3⋊C8  C42.47D6  C123M4(2)  (C2×C6).D8  C4⋊D4.S3  C6.Q16⋊C2  D1216D4  D1217D4  Dic617D4  (C2×Q8).49D6  (C2×C6).Q16  (C2×Q8).51D6  D12.36D4  D12.37D4  Dic6.37D4  C8×C3⋊D4  C2433D4  C24⋊D4  C2421D4  C24.6Dic3  (C2×C6)⋊8D8  (C3×D4).31D4  (C3×Q8)⋊13D4  (C2×C6)⋊8Q16  (C6×D4).11C4  (C3×D4)⋊14D4  (C3×D4).32D4  C36.55D4  C12.S4  C12.77D12  C627C8  C12.12S4  C60.93D4  C60.212D4  C30.7M4(2)  C30.22M4(2)
C12.55D4 is a maximal quotient of
(C2×C12)⋊3C8  C24.3Dic3  (C2×C12)⋊C8  C12.57D8  C12.26Q16  C24.98D4  C24.D4  C24.99D4  C36.55D4  C12.77D12  C627C8  C60.93D4  C60.212D4  C30.7M4(2)  C30.22M4(2)

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A···6G8A···8H12A···12H
order12222234444446···68···812···12
size11112221111222···26···62···2

36 irreducible representations

dim111111222222222
type+++++-+-
imageC1C2C2C4C4C8S3D4Dic3D6Dic3M4(2)C3⋊D4C3⋊C8C4.Dic3
kernelC12.55D4C2×C3⋊C8C22×C12C2×C12C22×C6C2×C6C22×C4C12C2×C4C2×C4C23C6C4C22C2
# reps121228121112444

Matrix representation of C12.55D4 in GL3(𝔽73) generated by

2700
0700
0749
,
1000
0227
0051
,
6300
0227
03951
G:=sub<GL(3,GF(73))| [27,0,0,0,70,7,0,0,49],[10,0,0,0,22,0,0,7,51],[63,0,0,0,22,39,0,7,51] >;

C12.55D4 in GAP, Magma, Sage, TeX

C_{12}._{55}D_4
% in TeX

G:=Group("C12.55D4");
// GroupNames label

G:=SmallGroup(96,37);
// by ID

G=gap.SmallGroup(96,37);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,121,86,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^4=a^6,c^2=a^9,b*a*b^-1=c*a*c^-1=a^5,c*b*c^-1=a^3*b^3>;
// generators/relations

Export

Subgroup lattice of C12.55D4 in TeX

׿
×
𝔽