direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×C3⋊C8, C12⋊2C8, C42.6S3, C6.1C42, C3⋊1(C4×C8), C6.6(C2×C8), C4.18(C4×S3), (C4×C12).6C2, (C2×C4).87D6, C12.23(C2×C4), (C2×C12).10C4, C2.1(C4×Dic3), (C2×C4).7Dic3, C22.6(C2×Dic3), (C2×C12).101C22, C2.1(C2×C3⋊C8), C42○(C2×C3⋊C8), (C2×C3⋊C8).11C2, (C2×C6).24(C2×C4), SmallGroup(96,9)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C4×C3⋊C8 |
Generators and relations for C4×C3⋊C8
G = < a,b,c | a4=b3=c8=1, ab=ba, ac=ca, cbc-1=b-1 >
(1 76 23 10)(2 77 24 11)(3 78 17 12)(4 79 18 13)(5 80 19 14)(6 73 20 15)(7 74 21 16)(8 75 22 9)(25 72 53 42)(26 65 54 43)(27 66 55 44)(28 67 56 45)(29 68 49 46)(30 69 50 47)(31 70 51 48)(32 71 52 41)(33 81 64 90)(34 82 57 91)(35 83 58 92)(36 84 59 93)(37 85 60 94)(38 86 61 95)(39 87 62 96)(40 88 63 89)
(1 71 82)(2 83 72)(3 65 84)(4 85 66)(5 67 86)(6 87 68)(7 69 88)(8 81 70)(9 33 31)(10 32 34)(11 35 25)(12 26 36)(13 37 27)(14 28 38)(15 39 29)(16 30 40)(17 43 93)(18 94 44)(19 45 95)(20 96 46)(21 47 89)(22 90 48)(23 41 91)(24 92 42)(49 73 62)(50 63 74)(51 75 64)(52 57 76)(53 77 58)(54 59 78)(55 79 60)(56 61 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
G:=sub<Sym(96)| (1,76,23,10)(2,77,24,11)(3,78,17,12)(4,79,18,13)(5,80,19,14)(6,73,20,15)(7,74,21,16)(8,75,22,9)(25,72,53,42)(26,65,54,43)(27,66,55,44)(28,67,56,45)(29,68,49,46)(30,69,50,47)(31,70,51,48)(32,71,52,41)(33,81,64,90)(34,82,57,91)(35,83,58,92)(36,84,59,93)(37,85,60,94)(38,86,61,95)(39,87,62,96)(40,88,63,89), (1,71,82)(2,83,72)(3,65,84)(4,85,66)(5,67,86)(6,87,68)(7,69,88)(8,81,70)(9,33,31)(10,32,34)(11,35,25)(12,26,36)(13,37,27)(14,28,38)(15,39,29)(16,30,40)(17,43,93)(18,94,44)(19,45,95)(20,96,46)(21,47,89)(22,90,48)(23,41,91)(24,92,42)(49,73,62)(50,63,74)(51,75,64)(52,57,76)(53,77,58)(54,59,78)(55,79,60)(56,61,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;
G:=Group( (1,76,23,10)(2,77,24,11)(3,78,17,12)(4,79,18,13)(5,80,19,14)(6,73,20,15)(7,74,21,16)(8,75,22,9)(25,72,53,42)(26,65,54,43)(27,66,55,44)(28,67,56,45)(29,68,49,46)(30,69,50,47)(31,70,51,48)(32,71,52,41)(33,81,64,90)(34,82,57,91)(35,83,58,92)(36,84,59,93)(37,85,60,94)(38,86,61,95)(39,87,62,96)(40,88,63,89), (1,71,82)(2,83,72)(3,65,84)(4,85,66)(5,67,86)(6,87,68)(7,69,88)(8,81,70)(9,33,31)(10,32,34)(11,35,25)(12,26,36)(13,37,27)(14,28,38)(15,39,29)(16,30,40)(17,43,93)(18,94,44)(19,45,95)(20,96,46)(21,47,89)(22,90,48)(23,41,91)(24,92,42)(49,73,62)(50,63,74)(51,75,64)(52,57,76)(53,77,58)(54,59,78)(55,79,60)(56,61,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );
G=PermutationGroup([[(1,76,23,10),(2,77,24,11),(3,78,17,12),(4,79,18,13),(5,80,19,14),(6,73,20,15),(7,74,21,16),(8,75,22,9),(25,72,53,42),(26,65,54,43),(27,66,55,44),(28,67,56,45),(29,68,49,46),(30,69,50,47),(31,70,51,48),(32,71,52,41),(33,81,64,90),(34,82,57,91),(35,83,58,92),(36,84,59,93),(37,85,60,94),(38,86,61,95),(39,87,62,96),(40,88,63,89)], [(1,71,82),(2,83,72),(3,65,84),(4,85,66),(5,67,86),(6,87,68),(7,69,88),(8,81,70),(9,33,31),(10,32,34),(11,35,25),(12,26,36),(13,37,27),(14,28,38),(15,39,29),(16,30,40),(17,43,93),(18,94,44),(19,45,95),(20,96,46),(21,47,89),(22,90,48),(23,41,91),(24,92,42),(49,73,62),(50,63,74),(51,75,64),(52,57,76),(53,77,58),(54,59,78),(55,79,60),(56,61,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])
C4×C3⋊C8 is a maximal subgroup of
C42.279D6 C24⋊C8 C12.53D8 C12.39SD16 D12⋊2C8 Dic6⋊2C8 C12.57D8 C12.26Q16 S3×C4×C8 C42.282D6 D6.4C42 C42.185D6 C42.196D6 Dic6⋊C8 C42.198D6 D12⋊C8 C12⋊2M4(2) C42.285D6 C12.5C42 C42.187D6 C12⋊3M4(2) C42.210D6 C42.213D6 C42.214D6 C42.215D6 C42.216D6 C12.16D8 C12⋊D8 C12⋊4SD16 C12.17D8 C12.9Q16 C12.SD16 C12⋊6SD16 C12.D8 C12⋊3Q16 C12.Q16
C4×C3⋊C8 is a maximal quotient of
C24⋊C8 C24.C8 (C2×C12)⋊3C8
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | ··· | 4L | 6A | 6B | 6C | 8A | ··· | 8P | 12A | ··· | 12L |
order | 1 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 2 | ··· | 2 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C4 | C4 | C8 | S3 | Dic3 | D6 | C3⋊C8 | C4×S3 |
kernel | C4×C3⋊C8 | C2×C3⋊C8 | C4×C12 | C3⋊C8 | C2×C12 | C12 | C42 | C2×C4 | C2×C4 | C4 | C4 |
# reps | 1 | 2 | 1 | 8 | 4 | 16 | 1 | 2 | 1 | 8 | 4 |
Matrix representation of C4×C3⋊C8 ►in GL3(𝔽73) generated by
46 | 0 | 0 |
0 | 27 | 0 |
0 | 0 | 27 |
1 | 0 | 0 |
0 | 0 | 72 |
0 | 1 | 72 |
27 | 0 | 0 |
0 | 23 | 6 |
0 | 29 | 50 |
G:=sub<GL(3,GF(73))| [46,0,0,0,27,0,0,0,27],[1,0,0,0,0,1,0,72,72],[27,0,0,0,23,29,0,6,50] >;
C4×C3⋊C8 in GAP, Magma, Sage, TeX
C_4\times C_3\rtimes C_8
% in TeX
G:=Group("C4xC3:C8");
// GroupNames label
G:=SmallGroup(96,9);
// by ID
G=gap.SmallGroup(96,9);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,55,86,2309]);
// Polycyclic
G:=Group<a,b,c|a^4=b^3=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export