Extensions 1→N→G→Q→1 with N=C4×D7 and Q=C2

Direct product G=N×Q with N=C4×D7 and Q=C2
dρLabelID
C2×C4×D756C2xC4xD7112,28

Semidirect products G=N:Q with N=C4×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D7)⋊1C2 = D4×D7φ: C2/C1C2 ⊆ Out C4×D7284+(C4xD7):1C2112,31
(C4×D7)⋊2C2 = D42D7φ: C2/C1C2 ⊆ Out C4×D7564-(C4xD7):2C2112,32
(C4×D7)⋊3C2 = Q82D7φ: C2/C1C2 ⊆ Out C4×D7564+(C4xD7):3C2112,34
(C4×D7)⋊4C2 = C4○D28φ: C2/C1C2 ⊆ Out C4×D7562(C4xD7):4C2112,30

Non-split extensions G=N.Q with N=C4×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D7).1C2 = Q8×D7φ: C2/C1C2 ⊆ Out C4×D7564-(C4xD7).1C2112,33
(C4×D7).2C2 = C8⋊D7φ: C2/C1C2 ⊆ Out C4×D7562(C4xD7).2C2112,4
(C4×D7).3C2 = C8×D7φ: trivial image562(C4xD7).3C2112,3

׿
×
𝔽